Transitive Relations and Examples
A relation R on a set X is transitive if, for all x,y,z in X, whenever x R y and y R z then x R z. Examples of transitive relations include the equality relation on any set, the "less than or equal" relation on any linearly ordered set, and the relation "x was born before y" on the set of all people. Symbolically, this can be denoted as: if x < y and y < z then x < z.
One example of a non-transitive relation is "city x can be reached via a direct flight from city y" on the set of all cities. Simply because there is a direct flight from one city to a second city, and a direct flight from the second city to the third, does not imply there is a direct flight from the first city to the third. The transitive closure of this relation is a different relation, namely "there is a sequence of direct flights that begins at city x and ends at city y". Every relation can be extended in a similar way to a transitive relation.
Read more about this topic: Transitive Closure
Famous quotes containing the words relations and/or examples:
“When one walks, one is brought into touch first of all with the essential relations between one’s physical powers and the character of the country; one is compelled to see it as its natives do. Then every man one meets is an individual. One is no longer regarded by the whole population as an unapproachable and uninteresting animal to be cheated and robbed.”
—Aleister Crowley (1875–1947)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (1896–1966)