In Logic and Computational Complexity
In finite model theory, first-order logic (FO) extended with a transitive closure operator is usually called transitive closure logic, and abbreviated FO(TC) or just TC. TC is a sub-type of fixpoint logics. The fact that FO(TC) is strictly more expressive than FO was discovered by Ronald Fagin in 1974; the result was then rediscovered by Alfred Aho and Jeffrey Ullman in 1979, who proposed to use fixpoint logic as a database query language (Libkin 2004:vii). With more recent concepts of finite model theory, proof that FO(TC) is strictly more expressive than FO follows immediately from the fact that FO(TC) is not Gaifman-local (Libkin 2004:49).
In computational complexity theory, the complexity class NL corresponds precisely to the set of logical sentences expressible in TC. This is because the transitive closure property has a close relationship with the NL-complete problem STCON for finding directed paths in a graph. Similarly, the class L is first-order logic with the commutative, transitive closure. When transitive closure is added to second-order logic instead, we obtain PSPACE.
Read more about this topic: Transitive Closure
Famous quotes containing the words logic and/or complexity:
“You can no more bridle passions with logic than you can justify them in the law courts. Passions are facts and not dogmas.”
—Alexander Herzen (18121870)
“The price we pay for the complexity of life is too high. When you think of all the effort you have to put intelephonic, technological and relationalto alter even the slightest bit of behaviour in this strange world we call social life, you are left pining for the straightforwardness of primitive peoples and their physical work.”
—Jean Baudrillard (b. 1929)