Three Examples
- Every nonempty internal subset of *R that has an upper bound in *R has a least upper bound in *R. Consequently the set of all infinitesimals is external.
- The well-ordering principle implies every nonempty internal subset of *N has a smallest member. Consequently the set
-
-
- of all infinite integers is external.
-
- If n is an infinite integer, then the set {1, ..., n} (which is not standard) must be internal. To prove this, first observe that the following is trivially true:
-
-
- Consequently
-
- As with internal sets, so with internal functions: Replace
-
- with
- and similarly with in place of .
- For example: If n is an infinite integer, then the complement of the image of any internal one-to-one function ƒ from the infinite set {1, ..., n} into {1, ..., n, n + 1, n + 2, n + 3} has exactly three members. Because of the infiniteness of the domain, the complements of the images of one-to-one functions from the former set to the latter come in many sizes, but most of these functions are external.
- This last example motivates an important definition: A *-finite (pronounced star-finite) subset of *R is one that can be placed in internal one-to-one correspondence with {1, ..., n} for some n ∈ *N.
Read more about this topic: Transfer Principle
Famous quotes containing the word examples:
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
Related Phrases
Related Words