Transfer Principle - Three Examples

Three Examples

  • Every nonempty internal subset of *R that has an upper bound in *R has a least upper bound in *R. Consequently the set of all infinitesimals is external.
    • The well-ordering principle implies every nonempty internal subset of *N has a smallest member. Consequently the set
of all infinite integers is external.
  • If n is an infinite integer, then the set {1, ..., n} (which is not standard) must be internal. To prove this, first observe that the following is trivially true:
Consequently
  • As with internal sets, so with internal functions: Replace
with
and similarly with in place of .
For example: If n is an infinite integer, then the complement of the image of any internal one-to-one function ƒ from the infinite set {1, ..., n} into {1, ..., n, n + 1, n + 2, n + 3} has exactly three members. Because of the infiniteness of the domain, the complements of the images of one-to-one functions from the former set to the latter come in many sizes, but most of these functions are external.
This last example motivates an important definition: A *-finite (pronounced star-finite) subset of *R is one that can be placed in internal one-to-one correspondence with {1, ..., n} for some n ∈ *N.

Read more about this topic:  Transfer Principle

Famous quotes containing the word examples:

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)