Statement
The ordered field *R of nonstandard real numbers properly includes the real field R. Like all ordered fields that properly include R, this field is non-Archimedean. It means that some members x ≠ 0 of *R are infinitesimal, i.e.,
The only infinitesimal in R is 0. Some other members of *R, the reciprocals y of the nonzero infinitesimals, are infinite, i.e.,
The underlying set of the field *R is the image of R under a mapping A ↦ *A from subsets A of R to subsets of *R. In every case
with equality if and only if A is finite. Sets of the form *A for some are called standard subsets of *R. The standard sets belong to a much larger class of subsets of *R called internal sets. Similarly each function
extends to a function
these are called standard functions, and belong to the much larger class of internal functions. Sets and functions that are not internal are external.
The importance of these concepts stems from their role in the following proposition and is illustrated by the examples that follow it.
The transfer principle:
- Suppose a proposition that is true of *R can be expressed via functions of finitely many variables (e.g. (x, y) ↦ x + y), relations among finitely many variables (e.g. x ≤ y), finitary logical connectives such as and, or, not, if...then..., and the quantifiers
- For example, one such proposition is
- Such a proposition is true in R if and only if it is true in *R when the quantifier
- replaces
- and similarly for .
- Suppose a proposition otherwise expressible as simply as those considered above mentions some particular sets . Such a proposition is true in R if and only if it is true in *R with each such "A" replaced by the corresponding *A. Here are two examples:
- The set
-
-
- must be
- including not only members of R between 0 and 1 inclusive, but also members of *R between 0 and 1 that differ from those by infinitesimals. To see this, observe that the sentence
- is true in R, and apply the transfer principle.
-
-
- The set *N must have no upper bound in *R (since the sentence expressing the non-existence of an upper bound of N in R is simple enough for the transfer principle to apply to it) and must contain n + 1 if it contains n, but must not contain anything between n and n + 1. Members of
-
-
- are "infinite integers".)
-
- Suppose a proposition otherwise expressible as simply as those considered above contains the quantifier
-
- Such a proposition is true in R if and only if it is true in *R after the changes specified above and the replacement of the quantifiers with
- and
Read more about this topic: Transfer Principle
Famous quotes containing the word statement:
“Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasnt written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.”
—Robert Benchley (18891945)
“He that writes to himself writes to an eternal public. That statement only is fit to be made public, which you have come at in attempting to satisfy your own curiosity.”
—Ralph Waldo Emerson (18031882)
“No statement about God is simply, literally true. God is far more than can be measured, described, defined in ordinary language, or pinned down to any particular happening.”
—David Jenkins (b. 1925)