In applied mathematics, the transfer matrix is a formulation in terms of a block-Toeplitz matrix of the two-scale equation, which characterizes refinable functions. Refinable functions play an important role in wavelet theory and finite element theory.
For the mask, which is a vector with component indexes from to, the transfer matrix of, we call it here, is defined as
More verbosely
The effect of can be expressed in terms of the downsampling operator "":
Read more about Transfer Matrix: Properties, See Also
Famous quotes containing the words transfer and/or matrix:
“I have proceeded ... to prevent the lapse from ... the point of blending between wakefulness and sleep.... Not ... that I can render the point more than a pointbut that I can startle myself ... into wakefulnessand thus transfer the point ... into the realm of Memoryconvey its impressions,... to a situation where ... I can survey them with the eye of analysis.”
—Edgar Allan Poe (18091849)
“In all cultures, the family imprints its members with selfhood. Human experience of identity has two elements; a sense of belonging and a sense of being separate. The laboratory in which these ingredients are mixed and dispensed is the family, the matrix of identity.”
—Salvador Minuchin (20th century)