Explanation
Transfer functions are commonly used in the analysis of systems such as single-input single-output filters, typically within the fields of signal processing, communication theory, and control theory. The term is often used exclusively to refer to linear, time-invariant systems (LTI), as covered in this article. Most real systems have non-linear input/output characteristics, but many systems, when operated within nominal parameters (not "over-driven") have behavior that is close enough to linear that LTI system theory is an acceptable representation of the input/output behavior.
In its simplest form for continuous-time input signal and output, the transfer function is the linear mapping of the Laplace transform of the input, to the Laplace transform of the output :
or
In discrete-time systems, the function is similarly written as (see Z-transform) and is often referred to as the pulse-transfer function.
Read more about this topic: Transfer Function
Famous quotes containing the word explanation:
“Auden, MacNeice, Day Lewis, I have read them all,
Hoping against hope to hear the authentic call . . .
And know the explanation I must pass is this
MYou cannot light a match on a crumbling wall.”
—Hugh MacDiarmid (18921978)
“To develop an empiricist account of science is to depict it as involving a search for truth only about the empirical world, about what is actual and observable.... It must involve throughout a resolute rejection of the demand for an explanation of the regularities in the observable course of nature, by means of truths concerning a reality beyond what is actual and observable, as a demand which plays no role in the scientific enterprise.”
—Bas Van Fraassen (b. 1941)
“We live between two worlds; we soar in the atmosphere; we creep upon the soil; we have the aspirations of creators and the propensities of quadrupeds. There can be but one explanation of this fact. We are passing from the animal into a higher form, and the drama of this planet is in its second act.”
—W. Winwood Reade (18381875)