Definition
Mimicking the definition for matrices, a bounded linear operator A over a separable Hilbert space H is said to be in the trace class if for some (and hence all) orthonormal bases {ek}k of H the sum of positive terms
is finite. In this case, the sum
is absolutely convergent and is independent of the choice of the orthonormal basis. This value is called the trace of A. When H is finite-dimensional, every operator is trace class and this definition of trace of A coincides with the definition of the trace of a matrix.
By extension, if A is a non-negative self-adjoint operator, we can also define the trace of A as an extended real number by the possibly divergent sum
Read more about this topic: Trace Class
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)