Critical Angle
The critical angle is the angle of incidence above which total internal reflection occurs. The angle of incidence is measured with respect to the normal at the refractive boundary (see diagram illustrating Snell's law). Consider a light ray passing from glass into air. The light emanating from the interface is bent towards the glass. When the incident angle is increased sufficiently, the transmitted angle (in air) reaches 90 degrees. It is at this point no light is transmitted into air. The critical angle is given by Snell's law,
- .
Rearranging Snell's Law, we get incidence
- .
To find the critical angle, we find the value for when 90° and thus . The resulting value of is equal to the critical angle .
Now, we can solve for, and we get the equation for the critical angle:
If the incident ray is precisely at the critical angle, the refracted ray is tangent to the boundary at the point of incidence. If for example, visible light were traveling through acrylic glass (with an index of refraction of 1.50) into air (with an index of refraction of 1.00), the calculation would give the critical angle for light from acrylic into air, which is
- .
Light incident on the border with an angle less than 41.8° would be partially transmitted, while light incident on the border at larger angles with respect to normal would be totally internally reflected.
If the fraction is greater than 1, then arcsine is not defined—meaning that total internal reflection does not occur even at very shallow or grazing incident angles.
So the critical angle is only defined when is less than 1.
A special name is given to the angle of incidence that produces an angle of refraction of 90˚. It is called the critical angle.
Read more about this topic: Total Internal Reflection
Famous quotes containing the words critical and/or angle:
“Much of what contrives to create critical moments in parenting stems from a fundamental misunderstanding as to what the child is capable of at any given age. If a parent misjudges a childs limitations as well as his own abilities, the potential exists for unreasonable expectations, frustration, disappointment and an unrealistic belief that what the child really needs is to be punished.”
—Lawrence Balter (20th century)
“I fly in dreams, I know it is my privilege, I do not recall a single situation in dreams when I was unable to fly. To execute every sort of curve and angle with a light impulse, a flying mathematicsthat is so distinct a happiness that it has permanently suffused my basic sense of happiness.”
—Friedrich Nietzsche (18441900)