Total Derivative - The Total Derivative As A Linear Map

The Total Derivative As A Linear Map

Let be an open subset. Then a function is said to be (totally) differentiable at a point, if there exists a linear map (also denoted Dpf or Df(p)) such that

The linear map is called the (total) derivative or (total) differential of at . A function is (totally) differentiable if its total derivative exists at every point in its domain.

Note that f is differentiable if and only if each of its components is differentiable. For this it is necessary, but not sufficient, that the partial derivatives of each function fj exist. However, if these partial derivatives exist and are continuous, then f is differentiable and its differential at any point is the linear map determined by the Jacobian matrix of partial derivatives at that point.

Read more about this topic:  Total Derivative

Famous quotes containing the words total, derivative and/or map:

    It seems to me that there must be an ecological limit to the number of paper pushers the earth can sustain, and that human civilization will collapse when the number of, say, tax lawyers exceeds the world’s total population of farmers, weavers, fisherpersons, and pediatric nurses.
    Barbara Ehrenreich (b. 1941)

    When we say “science” we can either mean any manipulation of the inventive and organizing power of the human intellect: or we can mean such an extremely different thing as the religion of science the vulgarized derivative from this pure activity manipulated by a sort of priestcraft into a great religious and political weapon.
    Wyndham Lewis (1882–1957)

    In my writing I am acting as a map maker, an explorer of psychic areas ... a cosmonaut of inner space, and I see no point in exploring areas that have already been thoroughly surveyed.
    William Burroughs (b. 1914)