Topological Order - Mathematical Foundation of Topological Order

Mathematical Foundation of Topological Order

We know that group theory is the mathematical foundation of symmetry breaking orders. What is the mathematical foundation of topological order? The string-net condensation suggests that tensor category (or monoidal category) theory may be the mathematical foundation of topological order. Quantum operator algebra is a very important mathematical tool in studying topological orders. A subclass of toplogical order—Abelian topological order in two dimensions—can be classified by a K-matrix approach. Some also suggest that topological order is mathematically described by extended quantum symmetry.

Read more about this topic:  Topological Order

Famous quotes containing the words mathematical, foundation and/or order:

    It is by a mathematical point only that we are wise, as the sailor or the fugitive slave keeps the polestar in his eye; but that is sufficient guidance for all our life. We may not arrive at our port within a calculable period, but we would preserve the true course.
    Henry David Thoreau (1817–1862)

    If all political power be derived only from Adam, and be to descend only to his successive heirs, by the ordinance of God and divine institution, this is a right antecedent and paramount to all government; and therefore the positive laws of men cannot determine that, which is itself the foundation of all law and government, and is to receive its rule only from the law of God and nature.
    John Locke (1632–1704)

    How all becomes clear and simple when one opens an eye on the within, having of course previously exposed it to the without, in order to benefit by the contrast.
    Samuel Beckett (1906–1989)