Time Evolution Operators
Consider a system with state space X for which evolution is deterministic and reversible. For concreteness let us also suppose time is a parameter that ranges over the set of real numbers R. Then time evolution is given by a family of bijective state transformations
Ft, s(x) is the state of the system at time t, whose state at time s is x. The following identity holds
To see why this is true, suppose x ∈ X is the state at time s. Then by the definition of F, Ft, s(x) is the state of the system at time t and consequently applying the definition once more, Fu, t(Ft, s(x)) is the state at time u. But this is also Fu, s(x).
In some contexts in mathematical physics, the mappings Ft, s are called propagation operators or simply propagators. In classical mechanics, the propagators are functions that operate on the phase space of a physical system. In quantum mechanics, the propagators are usually unitary operators on a Hilbert space. The propagators can be expressed as time-ordered exponentials of the integrated Hamiltonian. The asymptotic properties of time evolution are given by the scattering matrix.
A state space with a distinguished propagator is also called a dynamical system.
To say time evolution is homogeneous means that
In the case of a homogeneous system, the mappings Gt = Ft,0 form a one-parameter group of transformations of X, that is
Non-reversibility. For non-reversible systems, the propagation operators Ft, s are defined whenever t ≥ s and satisfy the propagation identity
In the homogeneous case the propagators are exponentials of the Hamiltonian.
Read more about this topic: Time Evolution
Famous quotes containing the words time and/or evolution:
“There is no more miserable human being than one in whom nothing is habitual but indecision, and for whom the lighting of every cigar, the drinking of every cup, the time of rising and going to bed every day, and the beginning of every bit of work, are subjects of express volitional deliberation.”
—William James (18421910)
“The evolution of a highly destined society must be moral; it must run in the grooves of the celestial wheels.”
—Ralph Waldo Emerson (18031882)