Table of Common Time Complexities
Further information: Computational complexity of mathematical operationsThe following table summarises some classes of commonly encountered time complexities. In the table, poly(x) = xO(1), i.e., polynomial in x.
Name | Complexity class | Running time (T(n)) | Examples of running times | Example algorithms |
---|---|---|---|---|
constant time | O(1) | 10 | Determining if an integer (represented in binary) is even or odd | |
inverse Ackermann time | O(α(n)) | Amortized time per operation using a disjoint set | ||
iterated logarithmic time | O(log* n) | Distributed coloring of cycles | ||
log-logarithmic | O(log log n) | Amortized time per operation using a bounded priority queue | ||
logarithmic time | DLOGTIME | O(log n) | log n, log(n2) | Binary search |
polylogarithmic time | poly(log n) | (log n)2 | ||
fractional power | O(nc) where 0 < c < 1 | n1/2, n2/3 | Searching in a kd-tree | |
linear time | O(n) | n | Finding the smallest item in an unsorted array | |
"n log star n" time | O(n log* n) | Seidel's polygon triangulation algorithm. | ||
linearithmic time | O(n log n) | n log n, log n! | Fastest possible comparison sort | |
quadratic time | O(n2) | n2 | Bubble sort; Insertion sort | |
cubic time | O(n3) | n3 | Naive multiplication of two n×n matrices. Calculating partial correlation. | |
polynomial time | P | 2O(log n) = poly(n) | n, n log n, n10 | Karmarkar's algorithm for linear programming; AKS primality test |
quasi-polynomial time | QP | 2poly(log n) | nlog log n, nlog n | Best-known O(log2 n)-approximation algorithm for the directed Steiner tree problem. |
sub-exponential time (first definition) |
SUBEXP | O(2nε) for all ε > 0 | O(2log nlog log n) | Assuming complexity theoretic conjectures, BPP is contained in SUBEXP. |
sub-exponential time (second definition) |
2o(n) | 2n1/3 | Best-known algorithm for integer factorization and graph isomorphism | |
exponential time | E | 2O(n) | 1.1n, 10n | Solving the traveling salesman problem using dynamic programming |
factorial time | O(n!) | n! | Solving the traveling salesman problem via brute-force search | |
exponential time | EXPTIME | 2poly(n) | 2n, 2n2 | |
double exponential time | 2-EXPTIME | 22poly(n) | 22n | Deciding the truth of a given statement in Presburger arithmetic |
Read more about this topic: Time Complexity
Famous quotes containing the words table, common, time and/or complexities:
“the moderate Aristotelian city
Of darning and the Eight-Fifteen, where Euclids geometry
And Newtons mechanics would account for our experience,
And the kitchen table exists because I scrub it.”
—W.H. (Wystan Hugh)
“So neither the one who plants nor the one who waters is anything, but only God who gives the growth. The one who plants and the one who waters have a common purpose, and each will receive wages according to the labor of each. For we are Gods servants, working together; you are Gods field, Gods building.”
—Bible: New Testament, 1 Corinthians 3:7-9.
“The life of a creator is not the only life nor perhaps the most interesting which a man leads. There is a time for play and a time for work, a time for creation and a time for lying fallow. And there is a time, glorious too in its own way, when one scarcely exists, when one is a complete void. I meanwhen boredom seems the very stuff of life.”
—Henry Miller (18911980)
“From infancy, a growing girl creates a tapestry of ever-deepening and ever- enlarging relationships, with her self at the center. . . . The feminine personality comes to define itself within relationship and connection, where growth includes greater and greater complexities of interaction.”
—Jeanne Elium (20th century)