Table of Common Time Complexities
Further information: Computational complexity of mathematical operationsThe following table summarises some classes of commonly encountered time complexities. In the table, poly(x) = xO(1), i.e., polynomial in x.
Name | Complexity class | Running time (T(n)) | Examples of running times | Example algorithms |
---|---|---|---|---|
constant time | O(1) | 10 | Determining if an integer (represented in binary) is even or odd | |
inverse Ackermann time | O(α(n)) | Amortized time per operation using a disjoint set | ||
iterated logarithmic time | O(log* n) | Distributed coloring of cycles | ||
log-logarithmic | O(log log n) | Amortized time per operation using a bounded priority queue | ||
logarithmic time | DLOGTIME | O(log n) | log n, log(n2) | Binary search |
polylogarithmic time | poly(log n) | (log n)2 | ||
fractional power | O(nc) where 0 < c < 1 | n1/2, n2/3 | Searching in a kd-tree | |
linear time | O(n) | n | Finding the smallest item in an unsorted array | |
"n log star n" time | O(n log* n) | Seidel's polygon triangulation algorithm. | ||
linearithmic time | O(n log n) | n log n, log n! | Fastest possible comparison sort | |
quadratic time | O(n2) | n2 | Bubble sort; Insertion sort | |
cubic time | O(n3) | n3 | Naive multiplication of two n×n matrices. Calculating partial correlation. | |
polynomial time | P | 2O(log n) = poly(n) | n, n log n, n10 | Karmarkar's algorithm for linear programming; AKS primality test |
quasi-polynomial time | QP | 2poly(log n) | nlog log n, nlog n | Best-known O(log2 n)-approximation algorithm for the directed Steiner tree problem. |
sub-exponential time (first definition) |
SUBEXP | O(2nε) for all ε > 0 | O(2log nlog log n) | Assuming complexity theoretic conjectures, BPP is contained in SUBEXP. |
sub-exponential time (second definition) |
2o(n) | 2n1/3 | Best-known algorithm for integer factorization and graph isomorphism | |
exponential time | E | 2O(n) | 1.1n, 10n | Solving the traveling salesman problem using dynamic programming |
factorial time | O(n!) | n! | Solving the traveling salesman problem via brute-force search | |
exponential time | EXPTIME | 2poly(n) | 2n, 2n2 | |
double exponential time | 2-EXPTIME | 22poly(n) | 22n | Deciding the truth of a given statement in Presburger arithmetic |
Read more about this topic: Time Complexity
Famous quotes containing the words table, common, time and/or complexities:
“Will you greet your doom
As final; set him loaves and wine; knowing
The game is finished when he plays his ace,
And overturn the table and go into the next room?”
—Philip Larkin (19221986)
“The black cat does not die. Those same books, if I am not mistaken, teach that the black cat is deathless. Deathless as evil. It is the origin of the common superstition of the cat with nine lives.”
—Peter Ruric, and Edgar G. Ulmer. Edgar G. Ulmer. Hjalmar Poelzig (Boris Karloff)
“Any time you take a chance you better be sure the rewards are worth the risk because they can put you away just as fast for a ten dollar heist as they can for a million dollar job.”
—Stanley Kubrick (b. 1928)
“From infancy, a growing girl creates a tapestry of ever-deepening and ever- enlarging relationships, with her self at the center. . . . The feminine personality comes to define itself within relationship and connection, where growth includes greater and greater complexities of interaction.”
—Jeanne Elium (20th century)