Tidal heating (also known as tidal working) occurs through the tidal friction processes: orbital and rotational energy are dissipated as heat in the crust of the moons and planets involved. Io, a moon of Jupiter, is the most volcanically active body in the solar system, with no impact craters surviving on its surface. This is because the tidal force of Jupiter deforms Io; the eccentricity of Io's orbit (a consequence of its participation in a Laplace resonance) causes the height of Io's tidal bulge to vary significantly (by up to 100 m) over the course of an orbit; the friction from this tidal flexing then heats up its interior. A similar but weaker process is theorised to have melted the lower layers of the ice surrounding the rocky mantle of Jupiter's next large moon, Europa. Saturn's moon Enceladus is similarly thought to have a liquid water ocean beneath its icy crust. The water vapor geysers which eject material from Enceladus are thought to be powered by friction generated within this moon's shifting ice crust. The role of tidal heating is expressed by dimensionless number C equal to quotient of tidal heating and total internal heating (Czechowski, L., 2006, Parameterized modelof convection driven by tidal and radiogenic heating, Adv. Space Res, 38, 4, 788-793).
Famous quotes containing the words tidal and/or heating:
“And now it is once more the tidal wave
That when it was swept by, leaves summits stained.
Oh, blood will out. It cannot be contained.”
—Robert Frost (18741963)
“If the factory people outside the colleges live under the discipline of narrow means, the people inside live under almost every other kind of discipline except that of narrow meansfrom the fruity austerities of learning, through the iron rations of English gentlemanhood, down to the modest disadvantages of occupying cold stone buildings without central heating and having to cross two or three quadrangles to take a bath.”
—Margaret Halsey (b. 1910)