Closed System
In a closed system, no mass may be transferred in or out of the system boundaries. The system always contains the same amount of matter, but heat and work can be exchanged across the boundary of the system. Whether a system can exchange heat, work, or both is dependent on the property of its boundary.
- Adiabatic boundary – not allowing any heat exchange
- Rigid boundary – not allowing exchange of work
One example is fluid being compressed by a piston in a cylinder. Another example of a closed system is a bomb calorimeter, a type of constant-volume calorimeter used in measuring the heat of combustion of a particular reaction. Electrical energy travels across the boundary to produce a spark between the electrodes and initiates combustion. Heat transfer occurs across the boundary after combustion but no mass transfer takes place either way.
Beginning with the first law of thermodynamics for an open system, this is expressed as:
where U is internal energy, Q is the heat added to the system, W is the work done by the system, and since no mass is transferred in or out of the system, both expressions involving mass flow are zero and the first law of thermodynamics for a closed system is derived. The first law of thermodynamics for a closed system states that the increase of internal energy of the system equals the amount of heat added to the system minus the work done by the system. For infinitesimal changes the first law for closed systems is stated by:
If the work is due to a volume expansion by dV at a pressure P than:
For a homogeneous system, in which only reversible processes can take place, the second law of thermodynamics reads:
where T is the absolute temperature and S is the entropy of the system. With these relations the fundamental thermodynamic relationship, used to compute changes in internal energy, is expressed as:
For a simple system, with only one type of particle (atom or molecule), a closed system amounts to a constant number of particles. However, for systems undergoing a chemical reaction, there may be all sorts of molecules being generated and destroyed by the reaction process. In this case, the fact that the system is closed is expressed by stating that the total number of each elemental atom is conserved, no matter what kind of molecule it may be a part of. Mathematically:
where Nj is the number of j-type molecules, aij is the number of atoms of element i in molecule j and bi0 is the total number of atoms of element i in the system, which remains constant, since the system is closed. There is one such equation for each element in the system.
Read more about this topic: Thermodynamic System
Famous quotes containing the words closed and/or system:
“Had I made capital on my prettiness, I should have closed the doors of public employment to women for many a year, by the very means which now makes them weak, underpaid competitors in the great workshop of the world.”
—Jane Grey Swisshelm (18151884)
“The United States is unusual among the industrial democracies in the rigidity of the system of ideological controlindoctrination we might sayexercised through the mass media.”
—Noam Chomsky (b. 1928)