In experimental physics, a test theory tells experimenters how to perform particular comparisons between specific theories or classes of theory.
Without a good reference test theory, these experiments can be difficult to construct. Different theories often define relationships and parameters in different, often incompatible, ways. Sometimes, physical theories and models that nominally produce significantly diverging predictions can be found to produce very similar, even identical, predictions, once definitional differences are taken into account.
A good test theory should identify potential sources of definitional bias in the way that experiments are constructed. It should also be able to deal with a wide range of possible objections to experimental tests based upon it. Discovery that a test theory has serious omissions can undermine the validity of experimental work that is designed according to that theory.
Famous quotes containing the words test and/or theory:
“Experimental work provides the strongest evidence for scientific realism. This is not because we test hypotheses about entities. It is because entities that in principle cannot be observed are manipulated to produce a new phenomena
[sic] and to investigate other aspects of nature.”
—Ian Hacking (b. 1936)
“every subjective phenomenon is essentially connected with a single point of view, and it seems inevitable that an objective, physical theory will abandon that point of view.”
—Thomas Nagel (b. 1938)