Tensor Product of Modules - Relationship To Flat Modules

Relationship To Flat Modules

In general, is a bifunctor which accepts a right and a left R module pair as input, and assigns them to the tensor product in the category of abelian groups.

By fixing a right R module M, a functor arises, and symmetrically a left R module N could be fixed to create a functor . Unlike the Hom bifunctor, the tensor functor is covariant in both inputs.

It can be shown that M⊗- and -⊗N are always right exact functors, but not necessarily left exact. By definition, a module T is a flat module if T⊗- is an exact functor.

If {mi}iI and {nj}jJ are generating sets for M and N, respectively, then {minj}iI,jJ will be a generating set for MN. Because the tensor functor MR- sometimes fails to be left exact, this may not be a minimal generating set, even if the original generating sets are minimal.

When the tensor products are taken over a field F so that -⊗- is exact in both positions, and the generating sets are bases of M and N, it is true that indeed forms a basis for MF N.

Read more about this topic:  Tensor Product Of Modules

Famous quotes containing the words relationship to, relationship and/or flat:

    Sometimes in our relationship to another human being the proper balance of friendship is restored when we put a few grains of impropriety onto our own side of the scale.
    Friedrich Nietzsche (1844–1900)

    The proper aim of education is to promote significant learning. Significant learning entails development. Development means successively asking broader and deeper questions of the relationship between oneself and the world. This is as true for first graders as graduate students, for fledging artists as graying accountants.
    Laurent A. Daloz (20th century)

    Maybe Rose, there is always another story,
    better unsaid, grim or flat or predatory.
    Anne Sexton (1928–1974)