Twisting By A Line Bundle
An extension of the tensor field idea incorporates an extra line bundle L on M. If W is the tensor product bundle of V with L, then W is a bundle of vector spaces of just the same dimension as V. This allows one to define the concept of tensor density, a 'twisted' type of tensor field. A tensor density is the special case where L is the bundle of densities on a manifold, namely the determinant bundle of the cotangent bundle. (To be strictly accurate, one should also apply the absolute value to the transition functions — this makes little difference for an orientable manifold.) For a more traditional explanation see the tensor density article.
One feature of the bundle of densities (again assuming orientability) L is that Ls is well-defined for real number values of s; this can be read from the transition functions, which take strictly positive real values. This means for example that we can take a half-density, the case where s = ½. In general we can take sections of W, the tensor product of V with Ls, and consider tensor density fields with weight s.
Half-densities are applied in areas such as defining integral operators on manifolds, and geometric quantization.
Read more about this topic: Tensor Field
Famous quotes containing the words twisting, line and/or bundle:
“... is merry glory.
Is saltatory.
Yet he grips his right of twisting free.”
—Gwendolyn Brooks (b. 1917)
“We have not passed that subtle line between childhood and adulthood until we move from the passive voice to the active voicethat is, until we have stopped saying It got lost, and say, I lost it.”
—Sydney J. Harris (b. 1917)
“In the quilts I had found good objectshospitable, warm, with soft edges yet resistant, with boundaries yet suggesting a continuous safe expanse, a field that could be bundled, a bundle that could be unfurled, portable equipment, light, washable, long-lasting, colorful, versatile, functional and ornamental, private and universal, mine and thine.”
—Radka Donnell-Vogt, U.S. quiltmaker. As quoted in Lives and Works, by Lynn F. Miller and Sally S. Swenson (1981)