Related Fields and Sub-fields
Many related fields may be considered tightly coupled to systems engineering. These areas have contributed to the development of systems engineering as a distinct entity.
- Cognitive systems engineering
- Cognitive systems engineering (CSE) is a specific approach to the description and analysis of human-machine systems or sociotechnical systems. The three main themes of CSE are how humans cope with complexity, how work is accomplished by the use of artifacts, and how human-machine systems and socio-technical systems can be described as joint cognitive systems. CSE has since its beginning become a recognised scientific discipline, sometimes also referred to as cognitive engineering. The concept of a Joint Cognitive System (JCS) has in particular become widely used as a way of understanding how complex socio-technical systems can be described with varying degrees of resolution. The more than 20 years of experience with CSE has been described extensively.
- Configuration management
- Like systems engineering, configuration management as practiced in the defense and aerospace industry is a broad systems-level practice. The field parallels the taskings of systems engineering; where systems engineering deals with requirements development, allocation to development items and verification, configuration management deals with requirements capture, traceability to the development item, and audit of development item to ensure that it has achieved the desired functionality that systems engineering and/or Test and Verification Engineering have proven out through objective testing.
- Control engineering
- Control engineering and its design and implementation of control systems, used extensively in nearly every industry, is a large sub-field of systems engineering. The cruise control on an automobile and the guidance system for a ballistic missile are two examples. Control systems theory is an active field of applied mathematics involving the investigation of solution spaces and the development of new methods for the analysis of the control process.
- Industrial engineering
- Industrial engineering is a branch of engineering that concerns the development, improvement, implementation and evaluation of integrated systems of people, money, knowledge, information, equipment, energy, material and process. Industrial engineering draws upon the principles and methods of engineering analysis and synthesis, as well as mathematical, physical and social sciences together with the principles and methods of engineering analysis and design to specify, predict and evaluate the results to be obtained from such systems.
- Interface design
- Interface design and its specification are concerned with assuring that the pieces of a system connect and inter-operate with other parts of the system and with external systems as necessary. Interface design also includes assuring that system interfaces be able to accept new features, including mechanical, electrical and logical interfaces, including reserved wires, plug-space, command codes and bits in communication protocols. This is known as extensibility. Human-Computer Interaction (HCI) or Human-Machine Interface (HMI) is another aspect of interface design, and is a critical aspect of modern systems engineering. Systems engineering principles are applied in the design of network protocols for local-area networks and wide-area networks.
- Mechatronic engineering
- Mechatronic engineering, like systems engineering, is a multidisciplinary field of engineering that uses dynamical systems modeling to express tangible constructs. In that regard it is almost indistinguishable from Systems Engineering, but what sets it apart is the focus on smaller details rather than larger generalizations and relationships. As such, both fields are distinguished by the scope of their projects rather than the methodology of their practice.
- Operations research
- Operations research supports systems engineering. The tools of operations research are used in systems analysis, decision making, and trade studies. Several schools teach SE courses within the operations research or industrial engineering department, highlighting the role systems engineering plays in complex projects. Operations research, briefly, is concerned with the optimization of a process under multiple constraints.
- Performance engineering
- Performance engineering is the discipline of ensuring a system will meet the customer's expectations for performance throughout its life. Performance is usually defined as the speed with which a certain operation is executed or the capability of executing a number of such operations in a unit of time. Performance may be degraded when an operations queue to be executed is throttled when the capacity is of the system is limited. For example, the performance of a packet-switched network would be characterised by the end-to-end packet transit delay or the number of packets switched within an hour. The design of high-performance systems makes use of analytical or simulation modeling, whereas the delivery of high-performance implementation involves thorough performance testing. Performance engineering relies heavily on statistics, queueing theory and probability theory for its tools and processes.
- Program management and project management.
- Program management (or programme management) has many similarities with systems engineering, but has broader-based origins than the engineering ones of systems engineering. Project management is also closely related to both program management and systems engineering.
- Proposal engineering
- Proposal engineering is the application of scientific and mathematical principles to design, construct, and operate a cost-effective proposal development system. Basically, proposal engineering uses the "systems engineering process" to create a cost effective proposal and increase the odds of a successful proposal.
- Reliability engineering
- Reliability engineering is the discipline of ensuring a system will meet the customer's expectations for reliability throughout its life; i.e. it will not fail more frequently than expected. Reliability engineering applies to all aspects of the system. It is closely associated with maintainability, availability and logistics engineering. Reliability engineering is always a critical component of safety engineering, as in failure modes and effects analysis (FMEA) and hazard fault tree analysis, and of security engineering. Reliability engineering relies heavily on statistics, probability theory and reliability theory for its tools and processes.
- Safety engineering
- The techniques of safety engineering may be applied by non-specialist engineers in designing complex systems to minimize the probability of safety-critical failures. The "System Safety Engineering" function helps to identify "safety hazards" in emerging designs, and may assist with techniques to "mitigate" the effects of (potentially) hazardous conditions that cannot be designed out of systems.
- Security engineering
- Security engineering can be viewed as an interdisciplinary field that integrates the community of practice for control systems design, reliability, safety and systems engineering. It may involve such sub-specialties as authentication of system users, system targets and others: people, objects and processes.
- Software engineering
- From its beginnings, software engineering has helped shape modern systems engineering practice. The techniques used in the handling of complexes of large software-intensive systems has had a major effect on the shaping and reshaping of the tools, methods and processes of SE.
Read more about this topic: Systems Engineering
Famous quotes containing the words related and/or fields:
“There is nothing but is related to us, nothing that does not interest us,kingdom, college, tree, horse, or iron show,the roots of all things are in man.”
—Ralph Waldo Emerson (18031882)
“Over the tree-tops I float thee a song,
Over the rising and sinking waves, over the myriad fields and the
prairies wide,
Over the dense-packed cities all and the teeming wharves and ways,
I float this carol with joy, with joy to thee, O death,”
—Walt Whitman (18191892)
Related Phrases
Related Words