System of Linear Equations

In mathematics, a system of linear equations (or linear system) is a collection of linear equations involving the same set of variables. For example,

\begin{alignat}{7}
3x &&\; + \;&& 2y &&\; - \;&& z &&\; = \;&& 1 & \\
2x &&\; - \;&& 2y &&\; + \;&& 4z &&\; = \;&& -2 & \\
-x &&\; + \;&& \tfrac{1}{2} y &&\; - \;&& z &&\; = \;&& 0 &
\end{alignat}

is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of numbers to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by

\begin{alignat}{2}
x & = & 1 \\
y & = & -2 \\
z & = & -2
\end{alignat}

since it makes all three equations valid.

In mathematics, the theory of linear systems is the basis and a fundamental part of linear algebra, a subject which is used in most parts of modern mathematics. Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer science, and economics. A system of non-linear equations can often be approximated by a linear system (see linearization), a helpful technique when making a mathematical model or computer simulation of a relatively complex system.

Very often, the coefficients of the equations are real or complex numbers and the solutions are searched in the same set of numbers, but the theory and the algorithms apply for coefficients and solutions in any field. For solutions in an integral domain like the ring of the integers, or in other algebraic structures, other theories have been developed. See, for example, integer linear programming for integer solutions, Gröbner basis for polynomial coefficients and unknowns, or also tropical geometry for linear algebra in a more exotic structure.

Read more about System Of Linear Equations:  Elementary Example, General Form, Solution Set, Homogeneous Systems

Famous quotes containing the words system of and/or system:

    Our system of government, in spite of Vietnam, Cambodia, CIA, Watergate, is still the best system of government on earth. And the greatest resource of all are the 215 million Americans who still have within us the strength, the character, the intelligence, the experience, the patriotism, the idealism, the compassion, the sense of brotherhood on which we can rely in the future to restore the greatness to our country.
    Jimmy Carter (James Earl Carter, Jr.)

    The golden mean in ethics, as in physics, is the centre of the system and that about which all revolve, and though to a distant and plodding planet it be an uttermost extreme, yet one day, when that planet’s year is completed, it will be found to be central.
    Henry David Thoreau (1817–1862)