Data Collection
Highly accurate data can be collected by aircraft overflying the terrain in question. In the 1980s, as a prototype for instruments to be flown on the NASA Space Shuttles, NASA operated a synthetic-aperture radar on a NASA Convair 990. However, in 1986, this plane caught fire on takeoff. In 1988, NASA rebuilt a C, L, and P-band SAR to fly on the NASA DC-8 aircraft. Called AIRSAR, it flew missions at sites around the world until 2004. Another such aircraft, the Convair 580, was flown by the Canada Center for Remote Sensing until about 1996 when it was handed over to Environment Canada due to budgetary reasons. Most land-surveying applications are now carried out by satellite observation. Satellites such as ERS-1/2, JERS-1, Envisat ASAR, and RADARSAT-1 were launched explicitly to carry out this sort of observation. Their capabilities differ, particularly in their support for interferometry, but all have collected tremendous amounts of valuable data. The Space Shuttle has also carried synthetic-aperture radar equipment during the SIR-A and SIR-B missions during the 1980s, as well as the Shuttle Radar Laboratory (SRL) missions in 1994 and the Shuttle Radar Topography Mission in 2000.
The Venera 15 and Venera 16 followed later by the Magellan space probe mapped the surface of Venus over several years using synthetic-aperture radar.
Synthetic-aperture radar was first used by NASA on JPL's Seasat oceanographic satellite in 1978 (this mission also carried an altimeter and a scatterometer); it was later developed more extensively on the Spaceborne Imaging Radar (SIR) missions on the space shuttle in 1981, 1984 and 1994. The Cassini mission to Saturn is currently using SAR to map the surface of the planet's major moon Titan, whose surface is partly hidden from direct optical inspection by atmospheric haze. The SHARAD sounding radar on the Mars Reconnaissance Orbiter and MARSIS instrument on Mars Express have observed bedrock beneath the surface of the Mars polar ice and also indicated the likelihood of substantial water ice in the Martian middle latitudes. The Lunar Reconnaissance Orbiter, launched in 2009, carries a SAR instrument called Mini-RF, which was designed largely to look for water ice deposits on the poles of the Moon.
The Mineseeker Project is designing a system for determining whether regions contain landmines based on a blimp carrying ultra-wideband synthetic-aperture radar. Initial trials show promise; the radar is able to detect even buried plastic mines.
SAR has been used in radio astronomy for many years to simulate a large radio telescope by combining observations taken from multiple locations using a mobile antenna.
The National Reconnaissance Office maintains a fleet of (now declassified) synthetic-aperture radar satellites commonly designated as Lacrosse or Onyx.
In February 2009, the Sentinel R1 surveillance aircraft entered service in the RAF, equipped with the SAR-based Airborne Stand-Off Radar (ASTOR) system.
The German Armed Forces' (Bundeswehr) military SAR-Lupe reconnaissance satellite system has been fully operational since July 22, 2008.
Read more about this topic: Synthetic Aperture Radar
Famous quotes containing the words data and/or collection:
“This city is neither a jungle nor the moon.... In long shot: a cosmic smudge, a conglomerate of bleeding energies. Close up, it is a fairly legible printed circuit, a transistorized labyrinth of beastly tracks, a data bank for asthmatic voice-prints.”
—Susan Sontag (b. 1933)
“Bolkenstein, a Minister, was speaking on the Dutch programme from London, and he said that they ought to make a collection of diaries and letters after the war. Of course, they all made a rush at my diary immediately. Just imagine how interesting it would be if I were to publish a romance of the Secret Annexe. The title alone would be enough to make people think it was a detective story.”
—Anne Frank (19291945)