Symplectic Transformations
In the abstract formulation of linear algebra, matrices are replaced with linear transformations of finite-dimensional vector spaces. The abstract analog of a symplectic matrix is a symplectic transformation of a symplectic vector space. Briefly, a symplectic vector space is a 2n-dimensional vector space V equipped with a nondegenerate, skew-symmetric bilinear form ω called the symplectic form.
A symplectic transformation is then a linear transformation L : V → V which preserves ω, i.e.
Fixing a basis for V, ω can be written as a matrix Ω and L as a matrix M. The condition that L be a symplectic transformation is precisely the condition that M be a symplectic matrix:
Under a change of basis, represented by a matrix A, we have
One can always bring Ω to either the standard forms given in the introduction or the block diagonal form described above by a suitable choice of A.
Read more about this topic: Symplectic Matrix