Evidence
A number of models have been proposed to account for this mode of speciation. The most popular, which invokes the disruptive selection model, was first put forward by John Maynard Smith in 1966. Maynard Smith suggested that homozygous individuals may, under particular environmental conditions, have a greater fitness than those with alleles heterozygous for a certain trait. Under the mechanism of natural selection, therefore, homozygosity would be favoured over heterozygosity, eventually leading to speciation. Sympatric divergence could also result from the sexual conflict.
Disruption may also occur in multiple-gene traits. The Medium Ground Finch (Geospiza fortis) is showing gene pool divergence in a population on Santa Cruz Island. Beak morphology conforms to two different size ideals, while intermediate individuals are selected against. Some characteristics (termed magic traits) such as beak morphology may drive speciation because they also affect mating signals. In this case, different beak phenotypes may result in different bird calls, providing a barrier to exchange between the gene pools.
A somewhat analogous system has been reported in horseshoe bats, in which echolocation call frequency appears to be a magic trait. In these bats, the constant frequency component of the call not only determines prey size but may also function in aspects of social communication. Work from one species, the large-eared horseshoe bat (Rhinolophus philippinensis), shows that abrupt changes in call frequency among sympatric morphs is correlated with reproductive isolation. A further well-studied circumstance of sympatric speciation is when insects feed on more than one species of host plant. In this case insects become specialized as they struggle to overcome the various plants' defense mechanisms. (Drès and Mallet, 2002)
Rhagoletis pomonella, the apple maggot, may be currently undergoing sympatric or, more precisely, heteropatric (see heteropatry) speciation. The apple feeding race of this species appears to have spontaneously emerged from the hawthorn feeding race in the 1800 - 1850 AD time frame, after apples were first introduced into North America. The apple feeding race does not now normally feed on hawthorns, and the hawthorn feeding race does not now normally feed on apples. This may be an early step towards the emergence of a new species. Isolated and relatively homogeneous habitats such as crater lakes and islands are among the best geographical settings in which to demonstrate sympatric speciation. For example, Nicaragua crater lake cichlid fishes include nine described species and dozens of undescribed species that have evolved by sympatric speciation
Allochrony offers some empirical evidence that sympatric speciation has taken place, as many examples exist of recently diverged (sister taxa) allochronic species.
Sympatric speciation events are vastly more common in plants, as they are prone to developing multiple homologous sets of chromosomes, resulting in a condition called polyploidy. The polyploidal offspring occupy the same environment as the parent plants (hence sympatry), but are reproductively isolated.
A rare example of sympatric speciation in animals is the divergence of "resident" and "transient" Orca forms in the northeast Pacific. Resident and transient orcas inhabit the same waters, but avoid each other and do not interbreed. The two forms hunt different prey species and have different diets, vocal behaviour, and social structures. Some divergences between species could also result from contrasts in microhabitats.
The European Polecat Mustela putorius exhibited a rare dark phenotype similar to the European mink Mustela lutreola phenotype which is directly influenced by peculiarities of forest brooks.
Read more about this topic: Sympatric Speciation
Famous quotes containing the word evidence:
“Analysis is more likely to adjust evidence than to adjust itself.”
—Mason Cooley (b. 1927)
“Faith. Belief without evidence in what is told by one who speaks without knowledge, of things without parallel.”
—Ambrose Bierce (18421914)
“No further evidence is needed to show that mental illness is not the name of a biological condition whose nature awaits to be elucidated, but is the name of a concept whose purpose is to obscure the obvious.”
—Thomas Szasz (b. 1920)