Symmetric Tensor - Definition

Definition

Let V be a vector space and

a tensor of order r. Then T is a symmetric tensor if

for the braiding maps associated to every permutation σ on the symbols {1,2,...,r} (or equivalently for every transposition on these symbols).

Given a basis {ei} of V, any symmetric tensor T of rank r can be written as

for some unique list of coefficients (the components of the tensor in the basis) that are symmetric on the indices. That is to say

for every permutation σ.

The space of all symmetric tensors of rank r defined on V is often denoted by Sr(V) or Symr(V). It is itself a vector space, and if V has dimension N then the dimension of Symr(V) is the binomial coefficient

Read more about this topic:  Symmetric Tensor

Famous quotes containing the word definition:

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)