Examples
In two variables X1, X2 one has symmetric polynomials like
and in three variables X1, X2, X3 one has for instance
There are many ways to make specific symmetric polynomials in any number of variables, see the various types below. An example of a somewhat different flavor is
where first a polynomial is constructed that changes sign under every exchange of variables, and taking the square renders it completely symmetric (if the variables represent the roots of a monic polynomial, this polynomial gives its discriminant).
On the other hand the polynomial in two variables
is not symmetric, since if one exchanges and one gets a different polynomial, . Similarly in three variables
has only symmetry under cyclic permutations of the three variables, which is not sufficient to be a symmetric polynomial.
Read more about this topic: Symmetric Polynomial
Famous quotes containing the word examples:
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)