Symmetric Group - Automorphism Group

Automorphism Group

For more details on this topic, see Automorphisms of the symmetric and alternating groups.
n
1 1
1 1
1

For, is a complete group: its center and outer automorphism group are both trivial.

For n = 2, the automorphism group is trivial, but S2 is not trivial: it is isomorphic to, which is abelian, and hence the center is the whole group.

For n = 6, it has an outer automorphism of order 2:, and the automorphism group is a semidirect product

In fact, for any set X of cardinality other than 6, every automorphism of the symmetric group on X is inner, a result first due to (Schreier & Ulam 1937) according to (Dixon & Mortimer 1996, p. 259).

Read more about this topic:  Symmetric Group

Famous quotes containing the word group:

    If the Russians have gone too far in subjecting the child and his peer group to conformity to a single set of values imposed by the adult society, perhaps we have reached the point of diminishing returns in allowing excessive autonomy and in failing to utilize the constructive potential of the peer group in developing social responsibility and consideration for others.
    Urie Bronfenbrenner (b. 1917)