Examples
- Consider the real function
- By definition, a symmetric function with n variables has the property that
- etc.
- In general, the function remains the same for every permutation of its variables. This means that, in this case,
- and so on, for all permutations of
- Consider the function
- If x and y are interchanged the function becomes
- which yields gives exactly the same results as the original f(x,y).
- Consider now the function
- If x and y are interchanged, the function becomes
- This function is obviously not the same as the original if a ≠ b, which makes it non-symmetric.
Read more about this topic: Symmetric Functions
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)