Principles
A sway bar is usually a torsion spring that resists body roll motions. It is usually constructed out of a wide, U-shaped (in plan view) cylindrical steel bar that connects to the body at two points, and at the left and right sides of the suspension. If the left and right wheels move together, the bar rotates about its mounting points. If the wheels move relative to each other, the bar is subjected to torsion and forced to twist. Each end of the bar is connected to an end link through a flexible joint. The sway bar end link in turn connects to a spot near a wheel or axle, permitting forces to be transferred from a heavily-loaded axle to the opposite side.
Forces are therefore transferred:
- from the heavily-loaded axle
- to the connected end link via a bushing
- to the anti-sway (torsion) bar via a flexible joint
- to the connected end link on the opposite side of the vehicle
- to the opposite axle.
The bar resists the torsion through its stiffness. The stiffness of an anti-roll bar is proportional to the stiffness of the material, the fourth power of its radius, and the inverse of the length of the lever arms (i.e., the shorter the lever arm, the stiffer the bar). Stiffness is also related to the geometry of the mounting points and the rigidity of the bar's mounting points. The stiffer the bar, the more force required to move the left and right wheels relative to each other. This increases the amount of force required to make the body roll.
In a turn the sprung mass of the vehicle's body produces a lateral force at the centre of gravity (CG), proportional to lateral acceleration. Because the CG is usually not on the roll axis, the lateral force creates a moment about the roll axis that tends to roll the body. (The roll axis is a line that joins the front and rear roll centers (SAEJ670e)). The moment is called the roll couple.
Roll couple is resisted by the suspension roll stiffness, which is a function of the spring rate of the vehicle's springs and of the anti-roll bars, if any. The use of anti-roll bars allows designers to reduce roll without making the suspension's springs stiffer in the vertical plane, which allows improved body control with less compromise of ride quality.
One effect of body (frame) lean, for typical suspension geometry, is positive camber of the wheels on the outside of the turn and negative on the inside, which reduces their cornering grip (especially with cross ply tires).
Read more about this topic: Sway Bar
Famous quotes containing the word principles:
“... the history of the race, from infancy through its stages of barbarism, heathenism, civilization, and Christianity, is a process of suffering, as the lower principles of humanity are gradually subjected to the higher.”
—Catherine E. Beecher (18001878)
“My country is bleeding, my people are perishing around me. But I feel as a South Carolinian, I am bound to tell the North, go on! go on! Never falter, never abandon the principles which you have adopted.”
—Angelina Grimké (18051879)
“To abandon oneself to principles is really to dieand to die for an impossible love which is the contrary of love.”
—Albert Camus (19131960)