Survey Sampling - Bias in Probability Sampling

Bias in Probability Sampling

Bias in surveys is undesirable, but often unavoidable. The major types of bias that may occur in the sampling process are:

  • Non-response bias: When individuals or households selected in the survey sample cannot or will not complete the survey there is the potential for bias to result from this non-response. Nonresponse bias occurs when the observed value deviates from the population parameter due to differences between respondents and nonrespondents.
  • Coverage bias: Coverage bias can occur when population members do not appear in the sample frame (undercoverage). Coverage bias occurs when the observed value deviates from the population parameter due to differences between covered and non-covered units. Telephone surveys suffer from a well known source of coverage bias because they cannot include households without telephones.
  • Selection Bias: Selection bias occurs when some units have a differing probability of selection that is unaccounted for by the researcher. For example, some households have multiple phone numbers making them more likely to be selected in a telephone survey than households with only one phone number. This selection bias would be corrected by applying a survey weight equal to to each household.

Read more about this topic:  Survey Sampling

Famous quotes containing the words bias and/or probability:

    The solar system has no anxiety about its reputation, and the credit of truth and honesty is as safe; nor have I any fear that a skeptical bias can be given by leaning hard on the sides of fate, of practical power, or of trade, which the doctrine of Faith cannot down-weigh.
    Ralph Waldo Emerson (1803–1882)

    Only in Britain could it be thought a defect to be “too clever by half.” The probability is that too many people are too stupid by three-quarters.
    John Major (b. 1943)