Surface Gravity - Surface Gravity of A Black Hole

Surface Gravity of A Black Hole

In relativity, the Newtonian concept of acceleration turns out not to be clear cut. For a black hole, which must be treated relativistically, one cannot define a surface gravity as the acceleration experienced by a test body at the object's surface. This is because the acceleration of a test body at the event horizon of a black hole turns out to be infinite in relativity. Because of this, a renormalized value is used that corresponds to the Newtonian value in the non-relativistic limit. The value used is generally the local proper acceleration (which diverges at the event horizon) multiplied by the gravitational redshift factor (which goes to zero at the event horizon). For the Schwarzschild case, this value is mathematically well behaved for all non-zero values of r and M.

When one talks about the surface gravity of a black hole, one is defining a notion that behaves analogously to the Newtonian surface gravity, but is not the same thing. In fact, the surface gravity of a general black hole is not well defined. However, one can define the surface gravity for a black hole whose event horizon is a Killing horizon.

The surface gravity of a static Killing horizon is the acceleration, as exerted at infinity, needed to keep an object at the horizon. Mathematically, if is a suitably normalized Killing vector, then the surface gravity is defined by

,

where the equation is evaluated at the horizon. For a static and asymptotically flat spacetime, the normalization should be chosen so that as, and so that . For the Schwarzschild solution, we take to be the time translation Killing vector, and more generally for the Kerr-Newman solution we take, the linear combination of the time translation and axisymmetry Killing vectors which is null at the horizon, where is the angular velocity.

Read more about this topic:  Surface Gravity

Famous quotes containing the words surface, gravity, black and/or hole:

    When we are in love, the sentiment is too great to be contained whole within us; it radiates out to our beloved, finds in her a surface which stops it, forces it to return to its point of departure, and it is this rebound of our own tenderness which we call the other’s affection and which charms us more than when it first went out because we do not see that it comes from us.
    Marcel Proust (1871–1922)

    Here I sit down to form characters. One I intend to be all goodness; All goodness he is. Another I intend to be all gravity; All gravity he is. Another Lady Gish; All Lady Gish she is. I am all the while absorbed in the character. It is not fair to say—I, identically I, am anywhere, while I keep within the character.
    Samuel Richardson (1689–1761)

    ... burned to tireless death
    A child of a few hours
    With its kneading mouth
    Charred on the black breast of the grave
    The mother dug, and its arms full of fires ...
    Dylan Thomas (1914–1953)

    Angel of hope and calendars, do you know despair?
    That hole I crawl into with a box of Kleenex....
    Anne Sexton (1928–1974)