Surface Gravity - Non-spherically Symmetric Objects

Non-spherically Symmetric Objects

Most real astronomical objects are not absolutely spherically symmetric. One reason for this is that they are often rotating, which means that they are affected by the combined effects of gravitational force and centrifugal force. This causes stars and planets to be oblate, which means that their surface gravity is smaller at the equator than at the poles. This effect was exploited by Hal Clement in his SF novel Mission of Gravity, dealing with a massive, fast-spinning planet where gravity was much higher at the poles than at the equator.

To the extent that an object's internal distribution of mass differs from a symmetric model, we may use the measured surface gravity to deduce things about the object's internal structure. This fact has been put to practical use since 1915–1916, when Roland Eötvös's torsion balance was used to prospect for oil near the city of Egbell (now Gbely, Slovakia.), p. 1663;, p. 223. In 1924, the torsion balance was used to locate the Nash Dome oil fields in Texas., p. 223.

It is sometimes useful to calculate the surface gravity of simple hypothetical objects which are not found in nature. The surface gravity of infinite planes, tubes, lines, hollow shells, cones, and even more unrealistic structures may be used to provide insights into the behavior of real structures.

Read more about this topic:  Surface Gravity

Famous quotes containing the word objects:

    By degrees we may come to know the primitive sense of the permanent objects of nature, so that the world shall be to us an open book, and every form significant of its hidden life and final cause.
    Ralph Waldo Emerson (1803–1882)