Surface Energy - Measuring The Surface Energy of A Solid

Measuring The Surface Energy of A Solid

The surface energy of a liquid may be measured by stretching a liquid membrane (which increases the surface area and hence the surface energy density). In that case, in order to increase the surface area of a mass of liquid by an amount, δA, a quantity of work, γδA, is needed (where γ is the surface energy density of the liquid). However, such a method cannot be used to measure the surface energy of a solid because stretching of a solid membrane induces elastic energy in the bulk in addition to increasing the surface energy.

The surface energy of a solid is usually measured at high temperatures. At such temperatures the solid creeps and even though the surface area changes, the volume remains approximately constant. If γ is the surface energy density of a cylindrical rod of radius and length at high temperature and a constant uniaxial tension, then at equilibrium, the variation of the total Gibbs free energy vanishes and we have

 \delta G = -P~\delta l + \gamma~\delta A = 0 \qquad \implies \qquad \gamma = P\cfrac{\delta l}{\delta A}

where is the Gibbs free energy and is the surface area of the rod:

 A = 2\pi r^2 + 2\pi r l \qquad \implies \qquad \delta A = 4\pi r\delta r + 2\pi l\delta r + 2\pi r\delta l

Also, since the volume of the rod remains constant, the variation of the volume is zero, i.e.,

 V = \pi r^2 l = \text{constant} \qquad \implies \qquad \delta V = 2\pi r l \delta r + \pi r^2 \delta l = 0 \implies \delta r = -\cfrac{r}{2l}\delta l ~.

Therefore, the surface energy density can be expressed as

 \gamma = \cfrac{Pl}{\pi r(l-2r)} ~.

The surface energy density of the solid can be computed by measuring, and at equilibrium.

This method is valid only if the solid is isotropic, meaning the surface energy is the same for all crystallographic orientations. While this is only strictly true for amorphous solids (glass) and liquids, isotropy is a good approximation for many other materials. In particular, if the sample is polygranular (most metals) or made by powder sintering (most ceramics) this is a good approximation.

In the case of single-crystal materials, such as natural gemstones, anisotropy in the surface energy leads to faceting. The shape of the crystal (assuming equilibrium growth conditions) is related to the surface energy by the Wulff construction. The surface energy of the facets can thus be found to within a scaling constant by measuring the relative sizes of the facets.

Read more about this topic:  Surface Energy

Famous quotes containing the words measuring the, measuring, surface, energy and/or solid:

    ... there is no way of measuring the damage to a society when a whole texture of humanity is kept from realizing its own power, when the woman architect who might have reinvented our cities sits barely literate in a semilegal sweatshop on the Texas- Mexican border, when women who should be founding colleges must work their entire lives as domestics ...
    Adrienne Rich (b. 1929)

    By measuring individual human worth, the novelist reveals the full enormity of the State’s crime when it sets out to crush that individuality.
    Ian McEwan (b. 1938)

    And yet we constantly reclaim some part of that primal spontaneity through the youngest among us, not only through their sorrow and anger but simply through everyday discoveries, life unwrapped. To see a child touch the piano keys for the first time, to watch a small body slice through the surface of the water in a clean dive, is to experience the shock, not of the new, but of the familiar revisited as though it were strange and wonderful.
    Anna Quindlen (b. 1952)

    The tendencies of the times favor the idea of self-government, and leave the individual, for all code, to the rewards and penalties of his own constitution, which work with more energy than we believe, whilst we depend on artificial restraints.
    Ralph Waldo Emerson (1803–1882)

    Now, we deny not, but that politicians may sometimes abuse religion, and make it serve for the promoting of their own private interests and designs; which yet they could not do so well neither, were the thing itself a mere cheat and figment of their own, and had no reality at all in nature, nor anything solid at the bottom of it.
    Ralph J. Cudworth (1617–1688)