Superheterodyne Receiver - History

History

The word "super" referrers to "super-sonic" (ultra-sonic today) meaning the IF frequency was superior to or above human hearing. The word heterodyne is derived from the Greek roots hetero- "different", and -dyne "power". The original heterodyne detector was pioneered by Canadian inventor Reginald Fessenden in 1905, but it was not pursued far because local oscillators available at the time (the oscillating arc) were unstable in their frequency output. The vacuum tube electronic oscillator would not come along until 1912. The autodyne receiver, which has one stage function as both a local oscillator and a heterodyne mixer, had several inventors around 1912 to 1913.

The superheterodyne principle was revisited in 1918 by U.S. Army Major Edwin Armstrong in France during World War I. He invented this receiver as a means of overcoming the deficiencies of early vacuum tube triodes used as high-frequency amplifiers in radio direction finding equipment. Unlike simple radio communication, which only needs to make transmitted signals audible, direction-finders measure the received signal strength, which necessitates linear amplification of the actual carrier wave.

In a triode radio-frequency (RF) amplifier, if both the plate (anode) and grid are connected to resonant circuits tuned to the same frequency, stray capacitive coupling between the grid and the plate will cause the amplifier to go into oscillation if the stage gain is much more than unity. In early designs, dozens (in some cases over 100) low-gain triode stages had to be connected in cascade to make workable equipment, which drew enormous amounts of power in operation and required a team of maintenance engineers. The strategic value was so high, however, that the British Admiralty felt the high cost was justified.

Armstrong realized that if radio direction-finding (RDF) receivers could be operated at a higher frequency, this would allow better detection of enemy shipping. However, at that time, no practical "short wave" (defined then as any frequency above 500 kHz) amplifier existed, due to the limitations of existing triodes.

A "heterodyne" refers to a beat or "difference" frequency produced when two or more radio frequency carrier waves are fed to a detector. The term was coined by Canadian Engineer Reginald Fessenden describing his proposed method of producing an audible signal from the Morse Code transmissions of an Alexanderson alternator-type transmitter. With the spark gap transmitters then in use, the Morse Code signal consisted of short bursts of a heavily modulated carrier wave which could be clearly heard as a series of short chirps or buzzes in the receiver's headphones. However, the signal from an Alexanderson Alternator did not have any such inherent modulation and Morse Code from one of those would only be heard as a series of clicks or thumps. Fessenden's idea was to run two Alexanderson Alternators, one producing a carrier frequency 3 kHz higher than the other. In the receiver's detector the two carriers would beat together to produce a 3 kHz tone thus in the headphones the morse signals would then be heard as a series of 3 kHz beeps. For this he coined the term "heterodyne" meaning "Generated by a Difference" (in frequency).

Later, when vacuum triodes became available, the same result could be achieved more conveniently by incorporating a "local oscillator" in the receiver, which became known as a "beat frequency oscillator" (BFO). As the BFO frequency was varied, the pitch of the heterodyne could be heard to vary with it. If the frequencies were too far apart the heterodyne became ultrasonic and hence no longer audible.

It had been noticed some time before that if a regenerative receiver was allowed to go into oscillation, other receivers nearby would suddenly start picking up stations on frequencies different from those that the stations were actually transmitted on. Armstrong (and others) eventually deduced that this was caused by a "supersonic heterodyne" between the station's carrier frequency and the oscillator frequency. Thus if a station was transmitting on 300 kHz and the oscillating receiver was set to 400 kHz, the station would be heard not only at the original 300 kHz, but also at 100 kHz and 700 kHz.

Armstrong realized that this was a potential solution to the "short wave" amplification problem, since the beat frequency still retained its original modulation, but on a lower carrier frequency. To monitor a frequency of 1500 kHz for example, he could set up an oscillator at, for example, 1560 kHz, which would produce a heterodyne difference frequency of 60 kHz, a frequency that could then be more conveniently amplified by the triodes of the day. He termed this the "Intermediate Frequency" often abbreviated to "IF".

In December 1919, Major E. H. Armstrong gave publicity to an indirect method of obtaining short-wave amplification, called the super-heterodyne. The idea is to reduce the incoming frequency which may be, say 1,500,000 cycles (200 meters), to some suitable super-audible frequency which can be amplified efficiently, then passing this current through a radio frequency amplifier and finally rectifying and carrying on to one or two stages of audio frequency amplification.

Early superheterodyne receivers used IFs as low as 20 kHz, often based on the self-resonance of iron-cored transformers. This made them extremely susceptible to image frequency interference, but at the time, the main objective was sensitivity rather than selectivity. Using this technique, a small number of triodes could be made to do the work that formerly required dozens of triodes.

In the 1920s, commercial IF filters looked very similar to 1920s audio interstage coupling transformers, had very similar construction and were wired up in an almost identical manner, and so they were referred to as "IF Transformers". By the mid-1930s however, superheterodynes were using higher intermediate frequencies, (typically around 440–470 kHz), with tuned coils similar in construction to the aerial and oscillator coils. The name "IF Transformer" is still used. Modern receivers typically use a mixture of ceramic resonator or SAW (surface-acoustic wave) resonators as well as traditional tuned-inductor IF transformers.

Armstrong was able to rapidly put his ideas into practice, and the technique was rapidly adopted by the military. However, it was less popular when commercial radio broadcasting began in the 1920s, mostly due to the need for an extra tube (for the oscillator), the generally higher cost of the receiver, and the level of technical skill required to operate it. For early domestic radios, tuned radio frequency receivers ("TRF"), also called the Neutrodyne, were more popular because they were cheaper, easier for a non-technical owner to use, and less costly to operate. Armstrong eventually sold his superheterodyne patent to Westinghouse, who then sold it to RCA, the latter monopolizing the market for superheterodyne receivers until 1930.

By the 1930s, improvements in vacuum tube technology rapidly eroded the TRF receiver's cost advantages, and the explosion in the number of broadcasting stations created a demand for cheaper, higher-performance receivers.

The development of the tetrode vacuum tube containing a screen grid led to a multi-element tube in which the mixer and oscillator functions could be combined, first used in the so-called autodyne mixer. This was rapidly followed by the introduction of tubes specifically designed for superheterodyne operation, most notably the pentagrid converter. By reducing the tube count, this further reduced the advantage of preceding receiver designs.

By the mid-1930s, commercial production of TRF receivers was largely replaced by superheterodyne receivers. The superheterodyne principle was eventually taken up for virtually all commercial radio and TV designs.

Read more about this topic:  Superheterodyne Receiver

Famous quotes containing the word history:

    History is more or less bunk. It’s tradition. We don’t want tradition. We want to live in the present and the only history that is worth a tinker’s damn is the history we make today.
    Henry Ford (1863–1947)

    America is the only nation in history which miraculously has gone directly from barbarism to degeneration without the usual interval of civilization.
    Georges Clemenceau (1841–1929)

    I assure you that in our next class we will concern ourselves solely with the history of Egypt, and not with the more lurid and non-curricular subject of living mummies.
    Griffin Jay, and Reginald LeBorg. Prof. Norman (Frank Reicher)