Super-Poulet Numbers With 3 or More Distinct Prime Divisors
It is relatively easy to get super-Poulet numbers with 3 distinct prime divisors. If you find three Poulet numbers with three common prime factors, you get a super-Poulet number, as you built the product of the three prime factors.
Example: 2701 = 37 * 73 is a Poulet number 4033 = 37 * 109 is a Poulet number 7957 = 73 * 109 is a Poulet number
so 294409 = 37 * 73 * 109 is a Poulet number too.
Super-Poulet numbers with up to 7 distinct prime factors you can get with the following numbers:
- { 103, 307, 2143, 2857, 6529, 11119, 131071 }
- { 709, 2833, 3541, 12037, 31153, 174877, 184081 }
- { 1861, 5581, 11161, 26041, 37201, 87421, 102301 }
- { 6421, 12841, 51361, 57781, 115561, 192601, 205441 }
For example 1.118.863.200.025.063.181.061.994.266.818.401 = 6421 * 12841 * 51361 * 57781 * 115561 * 192601 * 205441 is a super-Poulet number with 7 distinct prime factors and 120 Poulet numbers.
Read more about this topic: Super-Poulet Number
Famous quotes containing the words numbers, distinct and/or prime:
“I had but three chairs in my house; one for solitude, two for friendship; three for society. When visitors came in larger and unexpected numbers there was but the third chair for them all, but they generally economized the room by standing up.”
—Henry David Thoreau (18171862)
“The most important fact about our shopping malls, as distinct from the ordinary shopping centers where we go for our groceries, is that we do not need most of what they sell, not even for our pleasure or entertainment, not really even for a sensation of luxury. Little in them is essential to our survival, our work, or our play, and the same is true of the boutiques that multiply on our streets.”
—Henry Fairlie (19241990)
“If Montaigne is a man in the prime of life sitting in his study on a warm morning and putting down the sum of his experience in his rich, sinewy prose, then Pascal is that same man lying awake in the small hours of the night when death seems very close and every thought is heightened by the apprehension that it may be his last.”
—Cyril Connolly (19031974)