In computer science, the subset sum problem is an important problem in complexity theory and cryptography. The problem is this: given a set of integers, is there a non-empty subset whose sum is zero? For example, given the set { −7, −3, −2, 5, 8}, the answer is yes because the subset { −3, −2, 5} sums to zero. The problem is NP-complete.
An equivalent problem is this: given a set of integers and an integer s, does any non-empty subset sum to s? Subset sum can also be thought of as a special case of the knapsack problem. One interesting special case of subset sum is the partition problem, in which s is half of the sum of all elements in the set.
Read more about Subset Sum Problem: Complexity, Exponential Time Algorithm, Pseudo-polynomial Time Dynamic Programming Solution, Polynomial Time Approximate Algorithm, Further Reading
Famous quotes containing the words sum and/or problem:
“To sum up:
1. The cosmos is a gigantic fly-wheel making 10,000 revolutions a minute.
2. Man is a sick fly taking a dizzy ride on it.
3. Religion is the theory that the wheel was designed and set spinning to give him the ride.”
—H.L. (Henry Lewis)
“The problem is simply this: no one can feel like CEO of his or her life in the presence of the people who toilet trained her and spanked him when he was naughty. We may have become Masters of the Universe, accustomed to giving life and taking it away, casually ordering people into battle or out of their jobs . . . and yet we may still dirty our diapers at the sound of our mommys whimper or our daddys growl.”
—Frank Pittman (20th century)