In computer science, the subset sum problem is an important problem in complexity theory and cryptography. The problem is this: given a set of integers, is there a non-empty subset whose sum is zero? For example, given the set { −7, −3, −2, 5, 8}, the answer is yes because the subset { −3, −2, 5} sums to zero. The problem is NP-complete.
An equivalent problem is this: given a set of integers and an integer s, does any non-empty subset sum to s? Subset sum can also be thought of as a special case of the knapsack problem. One interesting special case of subset sum is the partition problem, in which s is half of the sum of all elements in the set.
Read more about Subset Sum Problem: Complexity, Exponential Time Algorithm, Pseudo-polynomial Time Dynamic Programming Solution, Polynomial Time Approximate Algorithm, Further Reading
Famous quotes containing the words sum and/or problem:
“No, the five hundred was the sum they named
To pay the doctors bill and tide me over.
Its that or fight, and I dont want to fight
I just want to get settled in my life....”
—Robert Frost (18741963)
“It is part of the educators responsibility to see equally to two things: First, that the problem grows out of the conditions of the experience being had in the present, and that it is within the range of the capacity of students; and, secondly, that it is such that it arouses in the learner an active quest for information and for production of new ideas. The new facts and new ideas thus obtained become the ground for further experiences in which new problems are presented.”
—John Dewey (18591952)