Submarine Communications Cable - Cable Repair

Cable Repair

Cables can be broken by fishing trawlers, anchors, earthquakes, turbidity currents and even shark bites. Based on surveying breaks in the Atlantic Ocean and the Caribbean Sea, it was found that between 1959 and 1996, fewer than 9% were due to natural events. In response to this threat to the communications network, the practice of cable burial has developed. The average incidence of cable faults was 3.7 per 1,000 km (620 mi) per year from 1959 to 1979. That rate was reduced to 0.44 faults per 1000 km per year after 1985, due to widespread burial of cable starting in 1980. Still, cable breaks are by no means a thing of the past, with more than 50 repairs a year in the Atlantic alone, and significant breaks in 2006, 2008 and 2009.

The propensity for fishing trawler nets to cause cable faults may well have been exploited during the Cold War. For example, in February 1959, a series of 12 breaks occurred in five American trans-Atlantic communications cables. In response, a United States naval vessel, the U.S.S. Roy O. Hale detained and investigated the Soviet trawler Novorosiysk. A review of the ship's log indicated it had been in the region of each of the cables when they broke. Broken sections of cable were also found on the deck of the Novorosiysk. It appeared that the cables had been dragged along by the ship's nets, and then cut once they were pulled up onto the deck to release the nets. The Soviet Union's stance on the investigation was that it was unjustified, but the United States cited the Convention for the Protection of Submarine Telegraph Cables of 1884 to which Russia had been committed (prior to the formation of the Soviet Union) as evidence of violation of international protocol.

Shore stations can locate a break in a cable by electrical measurements, such as through spread-spectrum time-domain reflectometry (SSTDR). SSTDR is a type of time-domain reflectometry that can be used in live environments very quickly. Presently, SSTDR can collect a complete data set in 20 ms. Spread spectrum signals are sent down the wire and then the reflected signal is observed. It is then correlated with the copy of the sent signal and mathematical algorithms are applied to the shape and timing of the signals to locate the break.

A cable repair ship will be sent to the location to drop a marker buoy near the break. Several types of grapples are used depending on the situation. If the sea bed in question is sandy, a grapple with rigid prongs is used to plough under the surface and catch the cable. If the cable is on a rocky sea surface, the grapple is more flexible, with hooks along its length so that it can adjust to the changing surface. In especially deep water, the cable may not be strong enough to lift as a single unit, so a special grapple that cuts the cable soon after it has been hooked is used and only one length of cable is brought to the surface at a time, whereupon a new section is spliced in. The repaired cable is longer than the original, so the excess is deliberately laid in a 'U' shape on the seabed. A submersible can be used to repair cables that lie in shallower waters.

A number of ports near important cable routes became homes to specialised cable repair ships. Halifax, Nova Scotia was home to a half dozen such vessels for most of the 20th century including long-lived vessels such as the CS Cyrus West Field, CS Minia and CS Mackay-Bennett. The latter two were contracted to recover victims from the sinking of the RMS Titanic. The crews of these vessels developed many new techniques and devices to repair and improve cable laying, such as the "plough".

Read more about this topic:  Submarine Communications Cable

Famous quotes containing the words cable and/or repair:

    To be where little cable cars climb halfway to the stars.
    Douglass Cross (b. 1920)

    Better to repair the pen after the sheep have escaped than not at all.
    Chinese proverb.