Structure Formation - Very Early Universe

Very Early Universe

The very early universe is still a poorly-understood epoch, from the viewpoint of fundamental physics. The prevailing theory, cosmic inflation, does a good job explaining the observed flatness, homogeneity and isotropy of the universe, as well as the absence of exotic relic particles (such as magnetic monopoles). In addition, it has made a crucial prediction that has been borne out by observation: that the primordial universe would have tiny perturbations which seed the formation of structure in the later universe. These fluctuations, while they form the foundation for all structure in the universe, appear most clearly as tiny temperature fluctuations at one part in 100,000. (To put this in perspective, the same level of fluctuations on a topographic map of the United States would show no feature higher than a few centimeters high.) These fluctuations are critical, because they provide the seeds from which the largest structures within the universe can grow and eventually collapse to form galaxies and stars. COBE (Cosmic Background Explorer) provided the first detection of the intrinsic fluctuations in the cosmic microwave background radiation in the 1990s.

These perturbations are thought to have a very specific character: they form a Gaussian random field whose covariance function is diagonal and nearly scale-invariant. The observed fluctuations appear to have exactly this form, and in addition the spectral index measured by WMAP – the spectral index measures the deviation from a scale-invariant (or Harrison-Zel'dovich) spectrum – is very nearly the value predicted by the simplest and most robust models of inflation. Another important property of the primordial perturbations, that they are adiabatic (or isentropic between the various kinds of matter that compose the universe), is predicted by cosmic inflation and has been confirmed by observations.

Other theories of the very early universe, which are claimed to make very similar predictions, have been proposed, such as the brane gas cosmology, cyclic model, pre-big bang model and holographic universe, but they remain in their nascency and are not as widely accepted. Some theories, such as cosmic strings have largely been refuted by increasingly precise data.

Read more about this topic:  Structure Formation

Famous quotes containing the words early and/or universe:

    Pray be always in motion. Early in the morning go and see things; and the rest of the day go and see people. If you stay but a week at a place, and that an insignificant one, see, however, all that is to be seen there; know as many people, and get into as many houses as ever you can.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    In a universe that is all gradations of matter, from gross to fine to finer, so that we end up with everything we are composed of in a lattice, a grid, a mesh, a mist, where particles or movements so small we cannot observe them are held in a strict and accurate web, that is nevertheless nonexistent to the eyes we use for ordinary living—in this system of fine and finer, where then is the substance of a thought?
    Doris Lessing (b. 1919)