Structure Formation - Linear Structure

Linear Structure

One of the key realizations made by cosmologists in the 1970s and 1980s was that the majority of the matter content of the universe was composed not of atoms, but rather a mysterious form of matter known as dark matter. Dark matter interacts through the force of gravity, but it is not composed of baryons and it is known with very high accuracy that it does not emit or absorb radiation. It may be composed of particles that interact through the weak interaction, such as neutrinos, but it cannot be composed entirely of the three known kinds of neutrinos (although some have suggested it is a sterile neutrino). Recent evidence suggests that there is about five times as much dark matter as baryonic matter, and thus the dynamics of the universe in this epoch are dominated by dark matter.

Dark matter plays a key role in structure formation because it feels only the force of gravity: the gravitational Jeans instability which allows compact structures to form is not opposed by any force, such as radiation pressure. As a result, dark matter begins to collapse into a complex network of dark matter halos well before ordinary matter, which is impeded by pressure forces. Without dark matter, the epoch of galaxy formation would occur substantially later in the universe than is observed.

The physics of structure formation in this epoch is particularly simple, as dark matter perturbations with different wavelengths evolve independently. As the Hubble radius grows in the expanding universe, it encompasses larger and larger perturbations. During matter domination, all causal dark matter perturbations grow through gravitational clustering. However, the shorter-wavelength perturbations that are encompassed during radiation domination have their growth retarded until matter domination. At this stage, luminous, baryonic matter is expected to simply mirror the evolution of the dark matter, and their distributions should closely trace one another.

It is a simple matter to calculate this "linear power spectrum" and, as a tool for cosmology, it is of comparable importance to the cosmic microwave background. The power spectrum has been measured by galaxy surveys, such as the Sloan Digital Sky Survey, and by surveys of the Lyman-α forest. Since these surveys observe radiation emitted from galaxies and quasars, they do not directly measure the dark matter, but the large scale distribution of galaxies (and of absorption lines in the Lyman-α forest) is expected to closely mirror the distribution of dark matter. This depends on the fact that galaxies will be larger and more numerous in denser parts of the universe, whereas they will be comparatively scarce in rarefied regions.

Read more about this topic:  Structure Formation

Famous quotes containing the word structure:

    Just as a new scientific discovery manifests something that was already latent in the order of nature, and at the same time is logically related to the total structure of the existing science, so the new poem manifests something that was already latent in the order of words.
    Northrop Frye (b. 1912)