Structural Stability - Definition

Definition

Let G be an open domain in Rn with compact closure and smooth (n−1)-dimensional boundary. Consider the space X1(G) consisting of restrictions to G of C1 vector fields on Rn that are transversal to the boundary of G and are inward oriented. This space is endowed with the C1 metric in the usual fashion. A vector field FX1(G) is weakly structurally stable if for any sufficiently small perturbation F1, the corresponding flows are topologically equivalent on G: there exists a homeomorphism h: GG which transforms the oriented trajectories of F into the oriented trajectories of F1. If, moreover, for any ε > 0 the homeomorphism h may be chosen to be C0 ε-close to the identity map when F1 belongs to a suitable neighborhood of F depending on ε, then F is called (strongly) structurally stable. These definitions extend in a straightforward way to the case of n-dimensional compact smooth manifolds with boundary. Andronov and Pontryagin originally considered the strong property. Analogous definitions can be given for diffeomorphisms in place of vector fields and flows: in this setting, the homeomorphism h must be a topological conjugacy.

It is important to note that topological equivalence is realized with a loss of smoothness: the map h cannot, in general, be a diffeomorphism. Moreover, although topological equivalence respects the oriented trajectories, unlike topological conjugacy, it is not time-compatible. Thus the relevant notion of topological equivalence is a considerable weakening of the naïve C1 conjugacy of vector fields. Without these restrictions, no continuous time system with fixed points or periodic orbits could have been structurally stable. Weakly structurally stable systems form an open set in X1(G), but it is unknown whether the same property holds in the strong case.

Read more about this topic:  Structural Stability

Famous quotes containing the word definition:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)