Possible Explanations For The Slow Progress of AI Research
See also The problems (in History of AI)
Since the launch of AI research in 1956, the growth of this field has slowed down over time and has stalled the aims of creating machines skilled with intelligent action at the human level. A possible explanation for this delay is that computers lack a sufficient scope of memory or processing power. In addition, the level of complexity that connects to the process of AI research may also limit the progress of AI research.
While most AI researchers believe that strong AI can be achieved in the future, there are some individuals like Hubert Dreyfus and Roger Penrose that deny the possibility of achieving AI. John McCarthy was one of various computer scientists who believe human-level AI will be accomplished, but a date cannot accurately be predicted.
Conceptual limitations are another possible reason for the slowness in AI research. AI researchers may need to modify the conceptual framework of their discipline in order to provide a stronger base and contribution to the quest of achieving strong AI. As William Clocksin wrote in 2003: "the framework starts from Weizenbaum’s observation that intelligence manifests itself only relative to specific social and cultural contexts".
Furthermore, AI researchers have been able to create computers that can perform jobs that are complicated for people to do, but conversely they have struggled to develop a computer that is capable of carrying out tasks that are simple for humans to do. A problem that is described by David Gelernter is that some people assume that thinking and reasoning are equivalent. However, the idea of whether thoughts and the creator of those thoughts are isolated individually has intrigued AI researchers.
The problems that have been encountered in AI research over the past decades have further impeded the progress of AI. The failed predictions that have been promised by AI researchers and the lack of a complete understanding of human behaviors have helped diminish the primary idea of human-level AI. Although the progress of AI research has brought both improvement and disappointment, most investigators have established optimism about potentially achieving the goal of AI in the 21st century.
Other possible reasons have been proposed for the lengthy research in the progress of strong AI. The intricacy of scientific problems and the need to fully understand the human brain through psychology and neurophysiology have limited many researchers from emulating the function of the human brain into a computer hardware. Many researchers tend to underestimate any doubt that is involved with future predictions of AI, but without taking those issues seriously can people then overlook solutions to problematic questions.
Clocksin says that a conceptual limitation that may impede the progress of AI research is that people may be using the wrong techniques for computer programs and implementation of equipment. When AI researchers first began to aim for the goal of artificial intelligence, a main interest was human reasoning. Researchers hoped to establish computational models of human knowledge through reasoning and to find out how to design a computer with a specific cognitive task.
The practice of abstraction, which people tend to redefine when working with a particular context in research, provides researchers with a concentration on just a few concepts. The most productive use of abstraction in AI research comes from planning and problem solving. Although the aim is to increase the speed of a computation, the role of abstraction has posed questions about the involvement of abstraction operators.
A possible reason for the slowness in AI relates to the acknowledgement by many AI researchers that heuristics is a section that contains a significant breach between computer performance and human performance. The specific functions that are programmed to a computer may be able to account for many of the requirements that allow it to match human intelligence. These explanations are not necessarily guaranteed to be the fundamental causes for the delay in achieving strong AI, but they are widely agreed by numerous researchers.
There have been many AI researchers that debate over the idea whether machines should be created with emotions. There are no emotions in typical models of AI and some researchers say programming emotions into machines allows them to have a mind of their own. Emotion sums up the experiences of humans because it allows them to remember those experiences.
As David Gelernter writes, “No computer will be creative unless it can simulate all the nuances of human emotion.” This concern about emotion has posed problems for AI researchers and it connects to the concept of strong AI as its research progresses into the future.
Read more about this topic: Strong AI
Famous quotes containing the words explanations, slow, progress and/or research:
“We operate exclusively with things that do not exist, with lines, surfaces, bodies, atoms, divisible time spans, divisible spaceshow could explanations be possible at all when we initially turn everything into images, into our images!”
—Friedrich Nietzsche (18441900)
“And set off briskly for so slow a thing,
Still going every which way in the joints, though,
So that it looked like lightning or a scribble.”
—Robert Frost (18741963)
“The fact is, the public make use of the classics of a country as a means of checking the progress of Art. They degrade the classics into authorities. They use them as bludgeons for preventing the free expression of Beauty in new forms.”
—Oscar Wilde (18541900)
“Our science has become terrible, our research dangerous, our findings deadly. We physicists have to make peace with reality. Reality is not as strong as we are. We will ruin reality.”
—Friedrich Dürrenmatt (19211990)