Errors and Compensation
Zero Offset - If the impedance of the four gauge arms are not exactly the same after bonding the gauge to the force collector, there will be a zero offset which can be compensated by introducing a parallel resistor to one or more of the gauge arms.
Temperature coefficient of Gauge Factor (TCGF) - This is the change of sensitivity of the device to strain with change in temperature. This is generally compensated for by the introduction of a fixed resistance in the input leg, whereby the effective supplied voltage will increase with temperature, compensating for the decrease in sensitivity with temperature.
Zero Shift with temperature - If the TCGF of each gauge is not the same, there will be a zero shift with temperature. This is also caused by anomalies in the force collector. This is usually compensated for with one or more resistors strategically placed in the compensation network.
Linearity - This is an error whereby the sensitivity changes across the pressure range. This is commonly a function of the force collection thickness selection for the intended pressure and/or the quality of the bonding.
Hysteresis - This is an error of return to zero after pressure excursion.
Repeatability - This error is sometimes tied-in with hysteresis but is across the pressure range.
EMI induced errors - As strain gauges output voltage is in the mV range, even uV if the Wheatstone bridge voltage drive is kept low to avoid self heating of the element, special care must be taken in output signal amplification to avoid amplifing also the superimposed noise. A solution which is frequently adopted is to use "carrier frequency" amplifiers which convert the voltage variation into a frequency variation (as in VCOs) and have a narrow bandwidth thus reducing out of band EMI.
Overloading - If a strain gauge is loaded beyond its design limit (measured in microstrains) its performance degrades and can not be recovered. Normally good engineering practice suggests not to stress strain gauges beyond +/-3000 microstrains.
Humidity - If the wires connecting the strain gauge to the signal conditioner are not protected against humidity (bare wire) a parasitic resistance creates between the wires and the substrate to which the strain gauge is glued, or between the two wires themselves. This resistance introduces an error which is proportional to the resistance of the strain gauge. For this reason low resistance strain gauges (120 ohm) are less prone to this type of error. To avoid this error it is sufficient to protect the strain gauges wires with insulating enamel (e.g., epoxy or polyurethanic type). Strain gauges with unprotected wires may be used only in a dry laboratory environment but not in an industrial one.
Read more about this topic: Strain Gauge
Famous quotes containing the words errors and/or compensation:
“In faith I do not love thee with mine eyes,
For they in thee a thousand errors note,
But tis my heart that loves what they dispise,”
—William Shakespeare (15641616)
“The compensation of a very early success is a conviction that life is a romantic matter. In the best sense one stays young.”
—F. Scott Fitzgerald (18961940)