Stochastic Matrix

In mathematics, a stochastic matrix (also termed probability matrix, transition matrix, substitution matrix, or Markov matrix) is a matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability. It has found use in probability theory, statistics and linear algebra, as well as computer science. There are several different definitions and types of stochastic matrices:

A right stochastic matrix is a square matrix of nonnegative real numbers, with each row summing to 1.
A left stochastic matrix is a square matrix of nonnegative real numbers, with each column summing to 1.
A doubly stochastic matrix is a square matrix of nonnegative real numbers with each row and column summing to 1.

In the same vein, one may define stochastic vector (also called probability vector) as a vector whose elements are nonnegative real numbers which sum to 1. Thus, each row of a right stochastic matrix (or column of a left stochastic matrix) is a stochastic vector.

A common convention in English language mathematics literature is to use row vectors of probabilities and right stochastic matrices rather than column vectors of probabilities and left stochastic matrices; this article follows that convention.

Read more about Stochastic Matrix:  Definition and Properties, Example: The Cat and Mouse

Famous quotes containing the word matrix:

    “The matrix is God?”
    “In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this being’s omniscience and omnipotence are assumed to be limited to the matrix.”
    “If it has limits, it isn’t omnipotent.”
    “Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
    William Gibson (b. 1948)