Stirling's Approximation - A Convergent Version of Stirling's Formula

A Convergent Version of Stirling's Formula

Thomas Bayes showed, in a letter to John Canton published by the Royal Society in 1763, that Stirling's formula did not give a convergent series.

Obtaining a convergent version of Stirling's formula entails evaluating

\int_0^\infty \frac{2\arctan (t/z)}{\exp(2 \pi t)-1}\,{\rm d}t
= \ln\Gamma (z) - \left( z-\frac12 \right) \ln z +z - \frac12\ln(2\pi).

One way to do this is by means of a convergent series of inverted rising exponentials. If ; then

\int_0^\infty \frac{2\arctan (t/z)}{\exp(2 \pi t)-1} \,{\rm d}t
= \sum_{n=1}^\infty \frac{c_n}{(z+1)^{\bar n}}

where

where s(n, k) denotes the Stirling numbers of the first kind. From this we obtain a version of Stirling's series


\begin{align}
\ln \Gamma (z) & = \left( z-\frac12 \right) \ln z -z + \frac{\ln (2 \pi)}{2} \\
& {} + \frac{1}{12(z+1)} + \frac{1}{12(z+1)(z+2)} + \frac{59}{360(z+1)(z+2)(z+3)} \\
& {} + \frac{29}{60(z+1)(z+2)(z+3)(z+4)} + \cdots
\end{align}

which converges when .

Read more about this topic:  Stirling's Approximation

Famous quotes containing the words version, stirling and/or formula:

    Truth cannot be defined or tested by agreement with ‘the world’; for not only do truths differ for different worlds but the nature of agreement between a world apart from it is notoriously nebulous. Rather—speaking loosely and without trying to answer either Pilate’s question or Tarski’s—a version is to be taken to be true when it offends no unyielding beliefs and none of its own precepts.
    Nelson Goodman (b. 1906)

    Oh, if thy pride did not our joys control,
    What world of loving wonders shouldst thou see!
    For if I saw thee once transformed in me,
    Then in thy bosom I would pour my soul;
    William Alexander, Earl O Stirling (1580?–1640)

    Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective positions of the beings which compose it, if moreover this intelligence were vast enough to submit these data to analysis, it would embrace in the same formula both the movements of the largest bodies in the universe and those of the lightest atom; to it nothing would be uncertain, and the future as the past would be present to its eyes.
    Pierre Simon De Laplace (1749–1827)