History
The main articles above cover the history all common types of steam engines and the history of the scientific discoveries leading up to the steam engine. Some types of engines have separate articles that may contain some additional history, including:
- Newcomen steam engine
- Watt steam engine
- Cornish engine
- Corliss steam engine
- Compound engine
The history of the steam engine stretches back as far as the first century AD; the first recorded rudimentary steam engine being the aeolipile described by Greek mathematician Hero of Alexandria. In the following centuries, the few steam-powered "engines" known were, like the aeolipile, essentially experimental devices used by inventors to demonstrate the properties of steam. A rudimentary steam turbine device was described by Taqi al-Din in 1551 and by Giovanni Branca in 1629. Jerónimo de Ayanz y Beaumont received patents in 1606 for fifty steam powered inventions, including a water pump for draining inundated mines. Denis Papin, a Huguenot refugee, did some useful work on the steam digester in 1679, and first used a piston to raise weights in 1690.
The first commercial steam-powered device was a water pump, developed in 1698 by Thomas Savery. It used a vacuum to raise water from below, then used steam pressure to raise it higher. Small engines were effective though larger models were problematic. They proved only to have a limited lift height and were prone to boiler explosions. It received some use in mines, pumping stations and for supplying water wheels used to power textile machinery. An attractive feature of the Savery engine was its low cost. It continued to be manufactured until the late 18th century. One engine was still known to be operating in 1820.
The first commercially successful true engine was the atmospheric engine, invented by Thomas Newcomen around 1712. It made use of technologies discovered by Savery and Papin. Newcomen's engine was relatively inefficient, and in most cases was used for pumping water. It worked by creating a partial vacuum by condensing steam in a cylinder. It was employed for draining mine workings at depths hitherto impossible, and also for providing a reusable water supply for driving waterwheels at factories sited away from a suitable "head". Water that had passed over the wheel was pumped back up into a storage reservoir above the wheel.
In 1720 Jacob Leupold built a two-cylinder high pressure steam engine. The invention was published in his major work "Theatri Machinarum Hydraulicarum". The engine used two lead-weighted pistons providing a continuous motion to a water pump. Each piston was raised by the steam pressure and returned to its original position by gravity. The two pistons shared a common four way rotary valve connected directly to a steam boiler.
John Smeaton made significant mechanical improvements to the Newcomen engine, most importantly better piston sealing, around the time James Watt was building his first engines (ca. late 1770s).
The next major step occurred when James Watt developed (1763–75) an improved version of Newcomen's engine, with a separate condenser. Boulton and Watt's early engines used half as much coal as the Smeaton improved version of Newcomen's. Newcomen's and Watt's early engines were "atmospheric". They were powered by air pressure pushing a piston into the partial vacuum generated by condensing steam, instead of the pressure of expanding steam. The engine cylinders had to be large because the only usable force acting on them was due to atmospheric pressure.
Watt proceeded to develop his engine further, modifying it to provide a rotary motion suitable for driving factory machinery. This enabled factories to be sited away from rivers, and further accelerated the pace of the Industrial Revolution.
Around 1800 Richard Trevithick and, separately, Oliver Evans in 1801 introduced engines using high-pressure steam; Trevithick obtained his high-pressure engine patent in 1802. These were much more powerful for a given cylinder size than previous engines and could be made small enough for transport applications. Thereafter, technological developments and improvements in manufacturing techniques (partly brought about by the adoption of the steam engine as a power source) resulted in the design of more efficient engines that could be smaller, faster, or more powerful, depending on the intended application.
The Corliss steam engine, a four-valve counterflow engine with separate steam admission and exhaust valves and automatic variable steam cut off, was called the most significant advance in the steam engine since James Watt. In addition to using 30% less steam it provided more uniform speed, making it well suited to manufacturing, especially cotton spinning.
Near the end of the 19th century compound engines came into widespread use. Compound engines exhausted steam in to successively larger cylinders to accommodate the higher volumes at reduced pressures, giving improved efficiency. These stages were called expansions, with double and triple expansion engines being used, especially in shipping where efficiency was important to reduce the weight of coal carried.
The final major evolution of the steam engine design was the switch from pistons to turbines starting in the early part of the 20th century. Turbines are more efficient than pistons, have fewer moving parts, and provide rotative power directly instead of through a connecting rod system or similar means.
Steam engines remained the dominant source of power well into the 20th century, when advances in the design of electric motors and internal combustion engines gradually resulted in the replacement of reciprocating (piston) steam engines in commercial usage, and the ascendancy of steam turbines in power generation. Today most steam power is provided by turbines.
Read more about this topic: Steam Engine
Famous quotes containing the word history:
“Certainly there is not the fight recorded in Concord history, at least, if in the history of America, that will bear a moments comparison with this, whether for the numbers engaged in it, or for the patriotism and heroism displayed.”
—Henry David Thoreau (18171862)
“My good friends, this is the second time in our history that there has come back from Germany to Downing Street peace with honour. I believe it is peace for our time. We thank you from the bottom of our hearts. And now I recommend you to go home and sleep quietly in your beds.”
—Neville Chamberlain (18691940)
“The History of the world is not the theatre of happiness. Periods of happiness are blank pages in it, for they are periods of harmonyperiods when the antithesis is in abeyance.”
—Georg Wilhelm Friedrich Hegel (17701831)