Ensembles of Classical Mechanical Systems
For an ensemble of a classical mechanical system, one considers the phase space of the given system. A collection of elements from the ensemble can be viewed as a swarm of representative points in the phase space. The statistical properties of the ensemble then depend on a chosen probability measure on the phase space. If a region A of the phase space has larger measure than region B, then a system chosen at random from the ensemble is more likely to be in a microstate belonging to A than B. The choice of this measure is dictated by the specific details of the system and the assumptions one makes about the ensemble in general. For example, the phase space measure of the microcanonical ensemble (see below) is different from that of the canonical ensemble. The normalizing factor of the probability measure is referred to as the partition function of the ensemble. Physically, the partition function encodes the underlying physical structure of the system.
When the measure is time-independent, the ensemble is said to be stationary.
Read more about this topic: Statistical Ensemble (mathematical Physics)
Famous quotes containing the words classical, mechanical and/or systems:
“Several classical sayings that one likes to repeat had quite a different meaning from the ones later times attributed to them.”
—Johann Wolfgang Von Goethe (17491832)
“No sociologist ... should think himself too good, even in his old age, to make tens of thousands of quite trivial computations in his head and perhaps for months at a time. One cannot with impunity try to transfer this task entirely to mechanical assistants if one wishes to figure something, even though the final result is often small indeed.”
—Max Weber (18641920)
“Not out of those, on whom systems of education have exhausted their culture, comes the helpful giant to destroy the old or to build the new, but out of unhandselled savage nature, out of terrible Druids and Berserkirs, come at last Alfred and Shakespeare.”
—Ralph Waldo Emerson (18031882)