In control engineering, a state space representation is a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract from the number of inputs, outputs and states, the variables are expressed as vectors. Additionally, if the dynamical system is linear and time invariant, the differential and algebraic equations may be written in matrix form. The state space representation (also known as the "time-domain approach") provides a convenient and compact way to model and analyze systems with multiple inputs and outputs. With inputs and outputs, we would otherwise have to write down Laplace transforms to encode all the information about a system. Unlike the frequency domain approach, the use of the state space representation is not limited to systems with linear components and zero initial conditions. "State space" refers to the space whose axes are the state variables. The state of the system can be represented as a vector within that space.
Read more about State Space Representation: State Variables, Linear Systems, Nonlinear Systems
Famous quotes containing the words state and/or space:
“A State in the grip of neo-colonialism is not master of its own destiny. It is this factor which makes neo- colonialism such a serious threat to world peace.”
—Kwame Nkrumah (19001972)
“True spoiling is nothing to do with what a child owns or with amount of attention he gets. he can have the major part of your income, living space and attention and not be spoiled, or he can have very little and be spoiled. It is not what he gets that is at issue. It is how and why he gets it. Spoiling is to do with the family balance of power.”
—Penelope Leach (20th century)