Star Polygon - Regular Star Polygons

Regular Star Polygons

In geometry, a "regular star polygon" is a self-intersecting, equilateral equiangular polygon, created by connecting one vertex of a simple, regular, p-sided polygon to another, non-adjacent vertex and continuing the process until the original vertex is reached again. Alternatively for integers p and q, it can be considered as being constructed by connecting every qth point out of p points regularly spaced in a circular placement. For instance, in a regular pentagon, a five-pointed star can be obtained by drawing a line from the first to the third vertex, from the third vertex to the fifth vertex, from the fifth vertex to the second vertex, from the second vertex to the fourth vertex, and from the fourth vertex to the first vertex. The notation for such a polygon is {p/q} (see Schläfli symbol), which is equal to {p/p-q}. Regular star polygons will be produced when p and q are relatively prime (they share no factors). A regular star polygon can also be represented as a sequence of stellations of a convex regular core polygon. Regular star polygons were first studied systematically by Thomas Bradwardine.

Read more about this topic:  Star Polygon

Famous quotes containing the words regular and/or star:

    They were regular in being gay, they learned little things that are things in being gay, they learned many little things that are things in being gay, they were gay every day, they were regular, they were gay, they were gay the same length of time every day, they were gay, they were quite regularly gay.
    Gertrude Stein (1874–1946)

    Fear not: that ultimate Star is frail,
    only a flake of snow,
    whirled in His breath.
    Hilda Doolittle (1886–1961)