Families of Regular Languages With Unbounded Star Height
The first question was answered in the negative when in 1963, Eggan gave examples of regular languages of star height n for every n. Here, the star height h(L) of a regular language L is defined as the minimum star height among all regular expressions representing L. The first few languages found by Eggan (1963) are described in the following, by means of giving a regular expression for each language:
The construction principle for these expressions is that expression is obtained by concatenating two copies of, appropriately renaming the letters of the second copy using fresh alphabet symbols, concatenating the result with another fresh alphabet symbol, and then by surrounding the resulting expression with a Kleene star. The remaining, more difficult part, is to prove that for there is no equivalent regular expression of star height less than n; a proof is given in (Eggan 1963).
However, Eggan's examples use a large alphabet, of size 2n-1 for the language with star height n. He thus asked whether we can also find examples over binary alphabets. This was proved to be true shortly afterwards by Dejean & Schützenberger (1966). Their examples can be described by an inductively defined family of regular expressions over the binary alphabet as follows–cf. Salomaa (1981):
Again, a rigorous proof is needed for the fact that does not admit an equivalent regular expression of lower star height. Proofs are given by (Dejean & Schützenberger 1966) and by (Salomaa 1981).
Read more about this topic: Star Height Problem
Famous quotes containing the words families, regular, languages, star and/or height:
“We as a nation need to be reeducated about the necessary and sufficient conditions for making human beings human. We need to be reeducated not as parentsbut as workers, neighbors, and friends; and as members of the organizations, committees, boardsand, especially, the informal networks that control our social institutions and thereby determine the conditions of life for our families and their children.”
—Urie Bronfenbrenner (b. 1917)
“It was inspiriting to hear the regular dip of the paddles, as if they were our fins or flippers, and to realize that we were at length fairly embarked. We who had felt strangely as stage-passengers and tavern-lodgers were suddenly naturalized there and presented with the freedom of the lakes and woods.”
—Henry David Thoreau (18171862)
“Wealth is so much the greatest good that Fortune has to bestow that in the Latin and English languages it has usurped her name.”
—William Lamb Melbourne, 2nd Viscount (17791848)
“The professional celebrity, male and female, is the crowning result of the star system of a society that makes a fetish of competition. In America, this system is carried to the point where a man who can knock a small white ball into a series of holes in the ground with more efficiency than anyone else thereby gains social access to the President of the United States.”
—C. Wright Mills (19161962)
“Much more frequent in Hollywood than the emergence of Cinderella is her sudden vanishing. At our party, even in those glowing days, the clock was always striking twelve for someone at the height of greatness; and there was never a prince to fetch her back to the happy scene.”
—Ben Hecht (18931964)