Standard Deviation - Relationship Between Standard Deviation and Mean

Relationship Between Standard Deviation and Mean

The mean and the standard deviation of a set of data are usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point. The precise statement is the following: suppose x1, ..., xn are real numbers and define the function:

Using calculus or by completing the square, it is possible to show that σ(r) has a unique minimum at the mean:

Variability can also be measured by the coefficient of variation, which is the ratio of the standard deviation to the mean. It is a dimensionless number.

Often, we want some information about the precision of the mean we obtained. We can obtain this by determining the standard deviation of the sampled mean. The standard deviation of the mean is related to the standard deviation of the distribution by:

where N is the number of observations in the sample used to estimate the mean. This can easily be proven with:

\begin{align}
\operatorname{var}(X) &\equiv \sigma^2_X\\
\operatorname{var}(X_1+X_2) &\equiv \operatorname{var}(X_1) + \operatorname{var}(X_2)\\
\operatorname{var}(cX_1) &\equiv c^2 \, \operatorname{var}(X_1)
\end{align}

hence


\begin{align}
\operatorname{var}(\text{mean}) &= \operatorname{var}\left (\frac{1}{N} \sum_{i=1}^N X_i \right) = \frac{1}{N^2}\operatorname{var}\left (\sum_{i=1}^N X_i \right ) \\ &= \frac{1}{N^2}\sum_{i=1}^N \operatorname{var}(X_i) = \frac{N}{N^2} \operatorname{var}(X) = \frac{1}{N} \operatorname{var} (X).
\end{align}

Resulting in:

Read more about this topic:  Standard Deviation

Famous quotes containing the words relationship between, relationship and/or standard:

    The relationship between mother and professional has not been a partnership in which both work together on behalf of the child, in which the expert helps the mother achieve her own goals for her child. Instead, professionals often behave as if they alone are advocates for the child; as if they are the guardians of the child’s needs; as if the mother left to her own devices will surely damage the child and only the professional can rescue him.
    Elaine Heffner (20th century)

    Artists have a double relationship towards nature: they are her master and her slave at the same time. They are her slave in so far as they must work with means of this world so as to be understood; her master in so far as they subject these means to their higher goals and make them subservient to them.
    Johann Wolfgang Von Goethe (1749–1832)

    ... the meanest life, the poorest existence, is attributed to God’s will, but as human beings become more affluent, as their living standard and style begin to ascend the material scale, God descends the scale of responsibility at a commensurate speed.
    Maya Angelou (b. 1928)