Standard Basis

In mathematics, the standard basis (also called natural basis or canonical basis) for a Euclidean space consists of one unit vector pointing in the direction of each axis of the Cartesian coordinate system. For example, the standard basis for the Euclidean plane are the vectors

and the standard basis for three-dimensional space are the vectors

Here the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction. There are several common notations for these vectors, including {ex, ey, ez}, {e1, e2, e3}, {i, j, k}, and {x, y, z}. These vectors are sometimes written with a hat to emphasize their status as unit vectors.

These vectors are a basis in the sense that any other vector can be expressed uniquely as a linear combination of these. For example, every vector v in three-dimensional space can be written uniquely as

the scalars vx, vy, vz being the scalar components of the vector v.

In -dimensional Euclidean space, the standard basis consists of n distinct vectors

where ei denotes the vector with a 1 in the th coordinate and 0's elsewhere.

Read more about Standard Basis:  Properties, Generalizations, Other Usages

Famous quotes containing the words standard and/or basis:

    Error is a supposition that pleasure and pain, that intelligence, substance, life, are existent in matter. Error is neither Mind nor one of Mind’s faculties. Error is the contradiction of Truth. Error is a belief without understanding. Error is unreal because untrue. It is that which seemeth to be and is not. If error were true, its truth would be error, and we should have a self-evident absurdity—namely, erroneous truth. Thus we should continue to lose the standard of Truth.
    Mary Baker Eddy (1821–1910)

    The self ... might be regarded as a sort of citadel of the mind, fortified without and containing selected treasures within, while love is an undivided share in the rest of the universe. In a healthy mind each contributes to the growth of the other: what we love intensely or for a long time we are likely to bring within the citadel, and to assert as part of ourself. On the other hand, it is only on the basis of a substantial self that a person is capable of progressive sympathy or love.
    Charles Horton Cooley (1864–1929)