Standard Basis

In mathematics, the standard basis (also called natural basis or canonical basis) for a Euclidean space consists of one unit vector pointing in the direction of each axis of the Cartesian coordinate system. For example, the standard basis for the Euclidean plane are the vectors

and the standard basis for three-dimensional space are the vectors

Here the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction. There are several common notations for these vectors, including {ex, ey, ez}, {e1, e2, e3}, {i, j, k}, and {x, y, z}. These vectors are sometimes written with a hat to emphasize their status as unit vectors.

These vectors are a basis in the sense that any other vector can be expressed uniquely as a linear combination of these. For example, every vector v in three-dimensional space can be written uniquely as

the scalars vx, vy, vz being the scalar components of the vector v.

In -dimensional Euclidean space, the standard basis consists of n distinct vectors

where ei denotes the vector with a 1 in the th coordinate and 0's elsewhere.

Read more about Standard Basis:  Properties, Generalizations, Other Usages

Famous quotes containing the words standard and/or basis:

    An indirect quotation we can usually expect to rate only as better or worse, more or less faithful, and we cannot even hope for a strict standard of more and less; what is involved is evaluation, relative to special purposes, of an essentially dramatic act.
    Willard Van Orman Quine (b. 1908)

    That food has always been, and will continue to be, the basis for one of our greater snobbisms does not explain the fact that the attitude toward the food choice of others is becoming more and more heatedly exclusive until it may well turn into one of those forms of bigotry against which gallant little committees are constantly planning campaigns in the cause of justice and decency.
    Cornelia Otis Skinner (1901–1979)