Dynamic Stall
Dynamic stall is a non-linear unsteady aerodynamic effect that occurs when airfoils rapidly change the angle of attack. The rapid change can cause a strong vortex to be shed from the leading edge of the aerofoil, and travel backwards above the wing. The vortex, containing high-velocity airflows, briefly increases the lift produced by the wing. As soon as it passes behind the trailing edge, however, the lift reduces dramatically, and the wing is in normal stall.
Dynamic stall is an effect most associated with helicopters and flapping wings. During forward flight, some regions of a helicopter blade may incur flow that reverses (compared to the direction of blade movement), and thus includes rapidly changing angles of attack. Oscillating (flapping) wings, such as those of insects— including the most famous one, the bumblebee — may rely almost entirely on dynamic stall for lift production, provided the oscillations are fast compared to the speed of flight, and the angle of the wing changes rapidly compared to airflow direction.
Stall delay can occur on airfoils subject to a high angle of attack and a three-dimensional flow. When the angle of attack on an airfoil is increasing rapidly, the flow will remain substantially attached to the airfoil to a significantly higher angle of attack than can be achieved in steady-state conditions. As a result, the stall is delayed momentarily and a lift coefficient significantly higher than the steady-state maximum is achieved. The effect was first noticed on propellers.
Read more about this topic: Stall (flight)
Famous quotes containing the words dynamic and/or stall:
“The nearer a conception comes towards finality, the nearer does the dynamic relation, out of which this concept has arisen, draw to a close. To know is to lose.”
—D.H. (David Herbert)
“Old age, believe me, is a good and pleasant thing. It is true you are gently shouldered off the stage, but then you are given such a comfortable front stall as spectator.”
—Jane Harrison (18501928)